Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 258, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946211

RESUMO

BACKGROUND: Although peripheral nerves have an intrinsic self-repair capacity following damage, functional recovery is limited in patients. It is a well-established fact that macrophages accumulate at the site of injury. Numerous studies indicate that the phenotypic shift from M1 macrophage to M2 macrophage plays a crucial role in the process of axon regeneration. This polarity change is observed exclusively in peripheral macrophages but not in microglia and CNS macrophages. However, the molecular basis of axonal regeneration by M2 macrophage is not yet fully understood. Herein, we aimed to identify the M2 macrophage-derived axon regeneration factor. METHODS: We established a peripheral nerve injury model by transection of the inferior alveolar nerve (IANX) in Sprague-Dawley rats. Transcriptome analysis was performed on the injured nerve. Recovery from sensory deficits in the mandibular region and histological reconnection of IAN after IANX were assessed in rats with macrophage depletion by clodronate. We investigated the effects of adoptive transfer of M2 macrophages or M2-derived cathepsin S (CTSS) on the sensory deficit. CTSS initiating signaling was explored by western blot analysis in IANX rats and immunohistochemistry in co-culture of primary fibroblasts and Schwann cells (SCs). RESULTS: Transcriptome analysis revealed that CTSS, a macrophage-selective lysosomal protease, was upregulated in the IAN after its injury. Spontaneous but partial recovery from a sensory deficit in the mandibular region after IANX was abrogated by macrophage ablation at the injured site. In addition, a robust induction of c-Jun, a marker of the repair-supportive phenotype of SCs, after IANX was abolished by macrophage ablation. As in transcriptome analysis, CTSS was upregulated at the injured IAN than in the intact IAN. Endogenous recovery from hypoesthesia was facilitated by supplementation of CTSS but delayed by pharmacological inhibition or genetic silencing of CTSS at the injured site. Adoptive transfer of M2-polarized macrophages at this site facilitated sensory recovery dependent on CTSS in macrophages. Post-IANX, CTSS caused the cleavage of Ephrin-B2 in fibroblasts, which, in turn, bound EphB2 in SCs. CTSS-induced Ephrin-B2 cleavage was also observed in human sensory nerves. Inhibition of CTSS-induced Ephrin-B2 signaling suppressed c-Jun induction in SCs and sensory recovery. CONCLUSIONS: These results suggest that M2 macrophage-derived CTSS contributes to axon regeneration by activating SCs via Ephrin-B2 shedding from fibroblasts.


Assuntos
Axônios , Traumatismos dos Nervos Periféricos , Animais , Humanos , Ratos , Axônios/patologia , Catepsinas/metabolismo , Catepsinas/farmacologia , Efrina-B2/metabolismo , Efrina-B2/farmacologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Ratos Sprague-Dawley , Células de Schwann/metabolismo
2.
J Oral Biosci ; 65(4): 356-364, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838226

RESUMO

OBJECTIVE: This study aimed to clarify the interactions between the tongue and primary afferent fibers in tongue cancer pain. METHODS: A pharmacological analysis was conducted to evaluate mechanical hypersensitivity of the tongues of rats with squamous cell carcinoma (SCC). Changes in trigeminal ganglion (TG) neurons projecting to the tongue were analyzed using immunohistochemistry and western blotting. RESULTS: SCC inoculation of the tongue caused persistent mechanical sensitization and tumor formation. Trypsin expression was significantly upregulated in cancer lesions. Continuous trypsin inhibition or protease-activated receptor 2 (PAR2) antagonism in the tongue significantly inhibited SCC-induced mechanical sensitization. No changes were observed in PAR2 and transient receptor potential vanilloid 4 (TRPV4) levels in the TG or the number of PAR2-and TRPV4-expressing TG neurons after SCC inoculation. In contrast, the relative amount of phosphorylated TRPV4 in the TG was significantly increased after SCC inoculation and abrogated by PAR2 antagonism in the tongue. TRPV4 antagonism in the tongue significantly ameliorated the mechanical sensitization caused by SCC inoculation. CONCLUSIONS: Our findings indicate that tumor-derived trypsin sensitizes primary afferent fibers by PAR2 stimulation and subsequent TRPV4 phosphorylation, resulting in severe tongue pain.


Assuntos
Dor do Câncer , Carcinoma de Células Escamosas , Glossalgia , Neoplasias da Língua , Animais , Ratos , Dor do Câncer/metabolismo , Glossalgia/metabolismo , Dor/metabolismo , Fosforilação , Receptor PAR-2/metabolismo , Língua/metabolismo , Neoplasias da Língua/metabolismo , Nervo Trigêmeo/metabolismo , Canais de Cátion TRPV/metabolismo , Tripsina/metabolismo , Tripsina/farmacologia
3.
Mol Cancer Ther ; 7(7): 2142-51, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18645024

RESUMO

Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly expressed in advanced and metastatic prostate cancers. The pathologic consequence of elevated PSMA expression in not known. Here, we report that PSMA is localized to a membrane compartment in the vicinity of mitotic spindle poles and associates with the anaphase-promoting complex (APC). PSMA-expressing cells prematurely degrade cyclin B and exit mitosis due to increased APC activity and incomplete inactivation of APC by the spindle assembly checkpoint. Further, expression of PSMA in a karyotypically stable cell line induces aneuploidy. Thus, these findings provide the first evidence that PSMA has a causal role in the induction of aneuploidy and might play an etiologic role in the progression of prostate cancer.


Assuntos
Instabilidade Cromossômica , Antígeno Prostático Específico/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Centrossomo/ultraestrutura , Instabilidade Cromossômica/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina B1 , Cães , Humanos , Nocodazol/farmacologia , Antígeno Prostático Específico/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fuso Acromático/metabolismo
4.
Mol Biol Cell ; 14(12): 4835-45, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14528023

RESUMO

Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed at high levels in prostate cancer and in tumor-associated neovasculature. In this study, we report that PSMA is internalized via a clathrin-dependent endocytic mechanism and that internalization of PSMA is mediated by the five N-terminal amino acids (MWNLL) present in its cytoplasmic tail. Deletion of the cytoplasmic tail abolished PSMA internalization. Mutagenesis of N-terminal amino acid residues at position 2, 3, or 4 to alanine did not affect internalization of PSMA, whereas mutation of amino acid residues 1 or 5 to alanine strongly inhibited internalization. Using a chimeric protein composed of Tac antigen, the alpha-chain of interleukin 2-receptor, fused to the first five amino acids of PSMA (Tac-MWNLL), we found that this sequence is sufficient for PSMA internalization. In addition, inclusion of additional alanines into the MWNLL sequence either in the Tac chimera or the full-length PSMA strongly inhibited internalization. From these results, we suggest that a novel MXXXL motif in the cytoplasmic tail mediates PSMA internalization. We also show that dominant negative micro2 of the adaptor protein (AP)-2 complex strongly inhibits the internalization of PSMA, indicating that AP-2 is involved in the internalization of PSMA mediated by the MXXXL motif.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Antígenos de Superfície/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Glutamato Carboxipeptidase II/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Antígenos de Superfície/química , Antígenos de Superfície/genética , Células COS , Chlorocebus aethiops , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/genética , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Modelos Moleculares , Mutação , Plasmídeos/genética , Ligação Proteica , Receptores de Interleucina-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA