Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Curr Opin Hematol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38640057

RESUMO

PURPOSE OF REVIEW: The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies. RECENT FINDINGS: Aging is characterized by the progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. During aging, the HSCs undergo both quantitative and qualitative changes. These functional changes in HSCs cause dysregulated hematopoiesis, resulting in anemia, immune dysfunction, and an increased risk of hematological malignancies. Various cell-intrinsic and cell-extrinsic effectors influencing HSC aging have also been identified. Epigenetic alterations are one such mechanism. SUMMARY: Cumulative epigenetic alterations in aged HSCs affect their fate, leading to aberrant self-renewal, differentiation, and function of aged HSCs. In turn, these factors provide an opportunity for aged HSCs to expand by modulating their self-renewal and differentiation balance, thereby contributing to the development of hematological malignancies.

2.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573813

RESUMO

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
3.
Rinsho Ketsueki ; 64(7): 581-585, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37544716

RESUMO

POEMS syndrome is a rare monoclonal plasma cell disorder with unique symptoms distinct from other plasma cell neoplasms. To identify and find the transcriptional features of clonal plasma cells in POEMS syndrome (POEMS clones), single-cell RNA sequencing was performed on patient-derived bone marrow plasma cells. POEMS clones were identified in 5 out of 10 patients, and the proportions of POEMS clones in the plasma cells were markedly smaller than that of other plasma cell malignancies such as multiple myeloma and MGUS. The transcriptional features of POEMS clones differed from those of other plasma cell diseases, and representative MM-related oncogenes were not upregulated in POEMS clones. Notably, POEMS clones are negative for CD19 and express significantly lower MHC-II levels than normal plasma cells; thus, CD19- HLA-DRlo is confirmed as a useful marker to identify POEMS clones in patients. These findings unveil the unique features of POEMS clones and contribute to the understanding of the pathogenesis of POEMS syndrome.


Assuntos
Mieloma Múltiplo , Síndrome POEMS , Paraproteinemias , Humanos , Plasmócitos/patologia , Síndrome POEMS/genética , Síndrome POEMS/diagnóstico , Mieloma Múltiplo/patologia , Células Clonais/patologia , Análise de Sequência de RNA
4.
Inflamm Regen ; 43(1): 41, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553580

RESUMO

BACKGROUND: During mouse embryonic development, definitive hematopoiesis is first detected around embryonic day (E) 10.5 in the aorta-gonad-mesonephros (AGM) region. Hematopoietic stem cells (HSCs) arise in the dorsal aorta's intra-aortic hematopoietic cell clusters (IAHCs). We have previously reported that a transcription factor Sox17 is expressed in IAHCs, and that, among them, CD45lowc-Kithigh cells have high hematopoietic activity. Furthermore, forced expression of Sox17 in this population of cells can maintain the formation of hematopoietic cell clusters. However, how Sox17 does so, particularly downstream signaling involved, remains poorly understood. The purpose of this study is to search for new Sox17 targets which contribute to cluster formation with hematopoietic activity. METHODS: RNA-sequencing (RNA-seq) analysis was done to identify genes that are upregulated in Sox17-expressing IAHCs as compared with Sox17-negative ones. Among the top 7 highly expressed genes, Rasip1 which had been reported to be a vascular-specific regulator was focused on in this study, and firstly, the whole-mount immunostaining was done. We conducted luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay to examine whether Sox17 regulates Rasip1 gene expression via binding to its enhancer element. We also analyzed the cluster formation and the multilineage colony-forming ability of Rasip1-transduced cells and Rasip1-knockdown Sox17-transduced cells. RESULTS: The increase of the Rasip1 expression level was observed in Sox17-positive CD45lowc-Kithigh cells as compared with the Sox17-nonexpressing control. Also, the expression level of the Rasip1 gene was increased by the Sox17-nuclear translocation. Rasip1 was expressed on the membrane of IAHCs, overlapping with the endothelial cell marker, CD31, and hematopoietic stem/progenitor marker (HSPC), c-Kit. Rasip1 expression was observed in most part of c-Kit+Sox17+ cells in IAHCs. Luciferase reporter assay and ChIP assay indicated that one of the five putative Sox17-binding sites in the Rasip1 enhancer region was important for Rasip1 expression via Sox17 binding. Rasip1 knockdown in Sox17-transduced cells decreased the cluster formation and diminished the colony-forming ability, while overexpression of Rasip1 in CD45lowc-Kithigh cells led to a significant but transient increase in hematopoietic activity. CONCLUSIONS: Rasip1 knockdown in Sox17-transduced CD45lowc-Kithigh cells displayed a significant decrease in the multilineage colony-forming ability and the cluster size. Rasip1 overexpression in Sox17-untransduced CD45lowc-Kithigh cells led to a significant but transient increase in the multilineage colony-forming ability, suggesting the presence of a cooperating factor for sustained hematopoietic activity.

6.
Elife ; 122023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266576

RESUMO

Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPα-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and ß-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.


Assuntos
Mielopoese , Complexo Repressor Polycomb 1 , Animais , Camundongos , Complexo Repressor Polycomb 1/metabolismo , Mielopoese/genética , Histonas , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo
7.
Leukemia ; 37(9): 1895-1907, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37198323

RESUMO

UTX/KDM6A, a histone H3K27 demethylase and a key component of the COMPASS complex, is frequently lost or mutated in cancer; however, its tumor suppressor function remains largely uncharacterized in multiple myeloma (MM). Here, we show that the conditional deletion of the X-linked Utx in germinal center (GC) derived cells collaborates with the activating BrafV600E mutation and promotes induction of lethal GC/post-GC B cell malignancies with MM-like plasma cell neoplasms being the most frequent. Mice that developed MM-like neoplasms showed expansion of clonal plasma cells in the bone marrow and extramedullary organs, serum M proteins, and anemia. Add-back of either wild-type UTX or a series of mutants revealed that cIDR domain, that forms phase-separated liquid condensates, is largely responsible for the catalytic activity-independent tumor suppressor function of UTX in MM cells. Utx loss in concert with BrafV600E only slightly induced MM-like profiles of transcriptome, chromatin accessibility, and H3K27 acetylation, however, it allowed plasma cells to gradually undergo full transformation through activation of transcriptional networks specific to MM that induce high levels of Myc expression. Our results reveal a tumor suppressor function of UTX in MM and implicate its insufficiency in the transcriptional reprogramming of plasma cells in the pathogenesis of MM.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Linfócitos B/metabolismo , Genes Supressores de Tumor , Centro Germinativo/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas B-raf/genética
8.
Cancer Immunol Immunother ; 72(8): 2635-2648, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37069353

RESUMO

Dysfunctional anti-tumor immunity has been implicated in the pathogenesis of mature B cell neoplasms, such as multiple myeloma and B cell lymphoma; however, the impact of exhausted T cells on disease development remains unclear. Therefore, the present study investigated the features and pathogenetic significance of exhausted T cells using a mouse model of de novo mature B cell neoplasms, which is likely to show immune escape similar to human patients. The results revealed a significant increase in PD-1+ Tim-3- and PD-1+ Tim-3+ T cells in sick mice. Furthermore, PD-1+ Tim-3+ T cells exhibited direct cytotoxicity with a short lifespan, showing transcriptional similarities to terminally exhausted T cells. On the other hand, PD-1+ Tim-3- T cells not only exhibited immunological responsiveness but also retained stem-like transcriptional features, suggesting that they play a role in the long-term maintenance of anti-tumor immunity. In PD-1+ Tim-3- and PD-1+ Tim-3+ T cells, the transcription factors Tox and Nr4a2, which reportedly contribute to the progression of T cell exhaustion, were up-regulated in vivo. These transcription factors were down-regulated by IMiDs in our in vitro T cell exhaustion analyses. The prevention of excessive T cell exhaustion may maintain effective anti-tumor immunity to cure mature B cell neoplasms.


Assuntos
Linfoma de Células B , Mieloma Múltiplo , Animais , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Modelos Animais de Doenças , Fatores de Transcrição
9.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36129760

RESUMO

POEMS syndrome is a rare monoclonal plasma cell disorder, with unique symptoms distinct from those of other plasma cell neoplasms, including high serum VEGF levels. Because the prospective isolation of POEMS clones has not yet been successful, their real nature remains unclear. Herein, we performed single-cell RNA-Seq of BM plasma cells from patients with POEMS syndrome and identified POEMS clones that had Ig λ light chain (IGL) sequences (IGLV1-36, -40, -44, and -47) with amino acid changes specific to POEMS syndrome. The proportions of POEMS clones in plasma cells were markedly smaller than in patients with multiple myeloma (MM) and patients with monoclonal gammopathy of undetermined significance (MGUS). Single-cell transcriptomes revealed that POEMS clones were CD19+, CD138+, and MHC class IIlo, which allowed for their prospective isolation. POEMS clones expressed significantly lower levels of c-MYC and CCND1 than MM clones, accounting for their small size. VEGF mRNA was not upregulated in POEMS clones, directly indicating that VEGF is not produced by POEMS clones. These results reveal unique features of POEMS clones and enhance our understanding of the pathogenesis of POEMS syndrome.


Assuntos
Mieloma Múltiplo , Síndrome POEMS , Humanos , Síndrome POEMS/diagnóstico , Síndrome POEMS/etiologia , Síndrome POEMS/patologia , Plasmócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Análise de Célula Única , Cadeias lambda de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Células Clonais/patologia , Mieloma Múltiplo/patologia , Aminoácidos/metabolismo
10.
Blood ; 140(22): 2358-2370, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984905

RESUMO

Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptor alfa de Ácido Retinoico/genética , Receptores do Ácido Retinoico/genética , Fatores de Transcrição/genética , Proteínas Nucleares/genética
11.
Cells ; 11(14)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35883630

RESUMO

The recent development of next-generation sequencing (NGS) technologies has contributed to research into various biological processes. These novel NGS technologies have revealed the involvement of epigenetic memories in trained immunity, which are responses to transient stimulation and result in better responses to secondary challenges. Not only innate system cells, such as macrophages, monocytes, and natural killer cells, but also bone marrow hematopoietic stem cells (HSCs) have been found to gain memories upon transient stimulation, leading to the enhancement of responses to secondary challenges. Various stimuli, including microbial infection, can induce the epigenetic reprogramming of innate immune cells and HSCs, which can result in an augmented response to secondary stimulation. In this review, we introduce novel NGS technologies and their application to unraveling epigenetic memories that are key in trained immunity and summarize the recent findings in trained immunity. We also discuss our most recent finding regarding epigenetic memory in aged HSCs, which may be associated with the exposure of HSCs to aging-related stresses.


Assuntos
Epigênese Genética , Imunidade Inata , Epigenômica , Células-Tronco Hematopoéticas , Monócitos
12.
Biochem Biophys Res Commun ; 619: 117-123, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35753219

RESUMO

Radiation therapy is one of the major treatment modalities for patients with cancers. However, ionizing radiation (IR) damages not only cancer cells but also the surrounding vascular endothelial cells (ECs). Hippo pathway effector genes Yap1 and Taz are the two transcriptional coactivators that have crucial roles in tissue homeostasis and vascular integrity in various organs. However, their function in adult ECs at the steady state and after IR is poorly understood. Here, we report sex- and context-dependent roles of endothelial YAP1/TAZ in maintaining vascular integrity and organismal survival. EC-specific Yap1/Taz deletion compromised systemic vascular integrity, resulting in lethal circulation failure preferentially in male mice. Furthermore, EC-specific Yap1/Taz deletion induced acute lethality upon sublethal IR that was closely associated with exacerbated systemic vascular dysfunction and circulation failure. Consistent with these findings, RNA-seq analysis revealed downregulation of tight junction genes in Yap1/Taz-deleted ECs. Collectively, our findings highlight the importance of endothelial YAP1/TAZ for maintaining adult vascular function, which may provide clinical implications for preventing organ injury after radiation therapy.


Assuntos
Neoplasias , Transativadores , Animais , Células Endoteliais/metabolismo , Masculino , Camundongos , Neoplasias/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
13.
Nat Commun ; 13(1): 2691, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577813

RESUMO

Hematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here, we present an integrated analysis of transcriptome and chromatin accessibility of aged HSCs and downstream progenitors. Alterations in chromatin accessibility preferentially take place in HSCs with aging, which gradually resolve with differentiation. Differentially open accessible regions (open DARs) in aged HSCs are enriched for enhancers and show enrichment of binding motifs of the STAT, ATF, and CNC family transcription factors that are activated in response to external stresses. Genes linked to open DARs show significantly higher levels of basal expression and their expression reaches significantly higher peaks after cytokine stimulation in aged HSCs than in young HSCs, suggesting that open DARs contribute to augmented transcriptional responses under stress conditions. However, a short-term stress challenge that mimics infection is not sufficient to induce persistent chromatin accessibility changes in young HSCs. These results indicate that the ongoing and/or history of exposure to external stresses may be epigenetically inscribed in HSCs to augment their responses to external stimuli.


Assuntos
Cromatina , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Células-Tronco Hematopoéticas/metabolismo
14.
Leukemia ; 36(2): 452-463, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34497325

RESUMO

Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.


Assuntos
Diferenciação Celular , Janus Quinase 2/genética , Mutação , Complexo Repressor Polycomb 1/fisiologia , Mielofibrose Primária/patologia , Animais , Feminino , Lisina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielofibrose Primária/etiologia , Mielofibrose Primária/metabolismo , Ubiquitinação
15.
Stem Cell Reports ; 16(12): 2861-2870, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861163

RESUMO

Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Progenitoras de Megacariócitos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Proliferação de Células , Células Clonais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima , Proteína bcl-X/metabolismo
16.
Sci Rep ; 11(1): 21396, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725436

RESUMO

Both EZH2 and its homolog EZH1 function as histone H3 Lysine 27 (H3K27) methyltransferases and repress the transcription of target genes. Dysregulation of H3K27 trimethylation (H3K27me3) plays an important role in the development and progression of cancers such as hepatocellular carcinoma (HCC). This study investigated the relationship between the expression of EZH1/2 and the level of H3K27me3 in HCC. Additionally, the role of EZH1/2 in cell growth, tumorigenicity, and resistance to sorafenib were also analyzed. Both the lentiviral knockdown and the pharmacological inhibition of EZH1/2 (UNC1999) diminished the level of H3K27me3 and suppressed cell growth in liver cancer cells, compared with EZH1 or EZH2 single knockdown. Although a significant association was observed between EZH2 expression and H3K27me3 levels in HCC samples, overexpression of EZH1 appeared to contribute to enhanced H3K27me3 levels in some EZH2lowH3K27me3high cases. Akt suppression following sorafenib treatment resulted in an increase of the H3K27me3 levels through a decrease in EZH2 phosphorylation at serine 21. The combined use of sorafenib and UNC1999 exhibited synergistic antitumor effects in vitro and in vivo. Combination treatment canceled the sorafenib-induced enhancement in H3K27me3 levels, indicating that activation of EZH2 function is one of the mechanisms of sorafenib-resistance in HCC. In conclusion, sorafenib plus EZH1/2 inhibitors may comprise a novel therapeutic approach in HCC.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Carcinoma Hepatocelular/terapia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Indazóis/uso terapêutico , Neoplasias Hepáticas/terapia , Piperazinas/uso terapêutico , Complexo Repressor Polycomb 2/antagonistas & inibidores , Piridonas/uso terapêutico , Sorafenibe/uso terapêutico , Idoso , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Terapia Genética , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Complexo Repressor Polycomb 2/genética
17.
Nat Commun ; 12(1): 6177, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702814

RESUMO

Pulmonary hypertension (PH) is a progressive cardiopulmonary disease characterized by pulmonary arterial remodeling. Clonal somatic mutations including JAK2V617F, the most frequent driver mutation among myeloproliferative neoplasms, have recently been identified in healthy individuals without hematological disorders. Here, we reveal that clonal hematopoiesis with JAK2V617F exacerbates PH and pulmonary arterial remodeling in mice. JAK2V617F-expressing neutrophils specifically accumulate in pulmonary arterial regions, accompanied by increases in neutrophil-derived elastase activity and chemokines in chronic hypoxia-exposed JAK2V617F transgenic (JAK2V617F) mice, as well as recipient mice transplanted with JAK2V617F bone marrow cells. JAK2V617F progressively upregulates Acvrl1 (encoding ALK1) during the differentiation from bone marrow stem/progenitor cells peripherally into mature neutrophils of pulmonary arterial regions. JAK2V617F-mediated STAT3 phosphorylation upregulates ALK1-Smad1/5/8 signaling. ALK1/2 inhibition completely prevents the development of PH in JAK2V617F mice. Finally, our prospective clinical study identified JAK2V617F-positive clonal hematopoiesis is more common in PH patients than in healthy subjects. These findings indicate that clonal hematopoiesis with JAK2V617F causally leads to PH development associated with ALK1 upregulation.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Hematopoiese Clonal/genética , Hipertensão Pulmonar/genética , Janus Quinase 2/genética , Pulmão/metabolismo , Neutrófilos/metabolismo , Receptores de Activinas Tipo II/genética , Animais , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Janus Quinase 2/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Fosforilação , Prevalência , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Regulação para Cima , Remodelação Vascular
18.
Stem Cells Dev ; 30(14): 725-735, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33926240

RESUMO

Human mesenchymal stem/stromal cells (hMSCs), when engrafted into immunodeficient mice, can form ectopic bone organs with hematopoietic stem cell (HSC) supportive functions. However, the ability to do so, through a cartilage intermediate, appears limited to 30% of donor bone marrow samples. In this study, we characterize the heterogeneous nature of hMSCs and their ability to efficiently form humanized ossicles observed in "good donors" to correlate with the frequency and functionality of chondrocyte progenitors. Flow cytometry of putative hMSC markers was enriched in the CD271+CD51+ stromal cell subset, which also possessed enhanced hMSC activity as assessed by single-cell colony-forming unit fibroblast (CFU-F) and undifferentiated mesensphere formation. Transcriptome analysis of CD271+ cells presented upregulation of chondrogenesis-/osteogenesis-related genes and HSC/niche maintenance factors such as C-X-C motif chemokine 12 (CXCL12) and ANGIOPOIETIN 1. Among the candidate genes selected to enrich for subsets with greater chondrogenic ability, cells negative for the actin cross-linker PALLADIN displayed the greatest CFU-F potential. Our study contributes to a better characterization of ossicle-forming hMSCs and their efficient isolation for the optimized engineering of human bone organs.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Adapaleno , Animais , Diferenciação Celular/genética , Condrogênese/genética , Proteínas do Citoesqueleto , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Células Estromais
19.
Exp Hematol ; 96: 52-62.e5, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582241

RESUMO

The bone marrow (BM) microenvironment, known as the BM niche, regulates hematopoiesis but is also affected by interactions with hematopoietic cells. Recent evidence indicates that extracellular matrix components are involved in these interactions. Chondroitin sulfate (CS), a glycosaminoglycan, is a major component of the extracellular matrix; however, it is not known whether CS has a physiological role in hematopoiesis. Here, we analyzed the functions of CS in hematopoietic and niche cells. CSGalNAcT1, which encodes CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, was highly expressed in hematopoietic stem and progenitor cells (HSPCs) and endothelial cells (ECs), but not in mesenchymal stromal cells (MSCs) in BM. In T1 knockout (T1KO) mice, a greater number of HSPCs existed compared with the wild-type (WT), but HSPCs from T1KO mice showed significantly impaired repopulation in WT recipient mice on serial transplantation. RNA sequence analysis revealed the activation of IFN-α/ß signaling and endoplasmic reticulum stress in T1KO HSPCs. In contrast, the number of WT HSPCs repopulated in T1KO recipient mice was larger than that in WT recipient mice after serial transplantation, indicating that the T1KO niche supports repopulation of HSPCs better than the WT niche. There was no obvious difference in the distribution of vasculature and MSCs between WT and T1KO BM, suggesting that CS loss alters vascular niche functions without affecting its structure. Our results revealed distinct roles of CS in hematopoietic cells and BM niche, indicating that crosstalk between these components is important to maintain homeostasis in BM.


Assuntos
Sulfatos de Condroitina/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco
20.
Blood Adv ; 5(2): 438-450, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496740

RESUMO

Dihydroorotate dehydrogenase (DHODH) catalyzes a rate-limiting step in de novo pyrimidine nucleotide synthesis. DHODH inhibition has recently been recognized as a potential new approach for treating acute myeloid leukemia (AML) by inducing differentiation. We investigated the efficacy of PTC299, a novel DHODH inhibitor, for myelodysplastic syndrome (MDS). PTC299 inhibited the proliferation of MDS cell lines, and this was rescued by exogenous uridine, which bypasses de novo pyrimidine synthesis. In contrast to AML cells, PTC299 was inefficient at inhibiting growth and inducing the differentiation of MDS cells, but synergized with hypomethylating agents, such as decitabine, to inhibit the growth of MDS cells. This synergistic effect was confirmed in primary MDS samples. As a single agent, PTC299 prolonged the survival of mice in xenograft models using MDS cell lines, and was more potent in combination with decitabine. Mechanistically, a treatment with PTC299 induced intra-S-phase arrest followed by apoptotic cell death. Of interest, PTC299 enhanced the incorporation of decitabine, an analog of cytidine, into DNA by inhibiting pyrimidine production, thereby enhancing the cytotoxic effects of decitabine. RNA-seq data revealed the marked downregulation of MYC target gene sets with PTC299 exposure. Transfection of MDS cell lines with MYC largely attenuated the growth inhibitory effects of PTC299, suggesting MYC as one of the major targets of PTC299. Our results indicate that the DHODH inhibitor PTC299 suppresses the growth of MDS cells and acts in a synergistic manner with decitabine. This combination therapy may be a new therapeutic option for the treatment of MDS.


Assuntos
Síndromes Mielodisplásicas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , DNA , Decitabina/farmacologia , Di-Hidro-Orotato Desidrogenase , Camundongos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA