Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 276: 116665, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013358

RESUMO

Despite recent advances in the treatment of cancer, the issue of therapy resistance remains one of the most significant challenges in the field. In this context, signaling molecules, such as cytokines have emerged as promising targets for drug discovery. Examples of cytokines include macrophage migration inhibitory factor (MIF) and its closely related analogue D-dopachrome tautomerase (D-DT). In this study we aim to develop a new chemical class of D-DT binders and subsequently create a dual-targeted inhibitor that can potentially trigger D-DT degradation via the Proteolysis Targeting Chimera (PROTAC) technology. Here we describe the synthesis of a novel library of 1,2,3-triazoles targeting D-DT. The most potent derivative 19c (IC50 of 0.5 ± 0.04 µM with high selectivity toward D-DT) was attached to a cereblon (CRBN) ligand through aliphatic amides, which were synthesized by a remarkably convenient and effective solvent-free reaction. Enzyme inhibition experiments led to the discovery of the compound 10d, which exhibited moderate inhibitory potency (IC50 of 5.9 ± 0.7 µM), but unfortunately demonstrated no activity in D-DT degradation experiments. In conclusion, this study offers valuable insight into the SAR of D-DT inhibition, paving the way for the development of novel molecules as tools to study D-DT functions in tumor proliferation and, ultimately, new therapeutics for cancer treatment.


Assuntos
Inibidores Enzimáticos , Oxirredutases Intramoleculares , Triazóis , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Humanos , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química
2.
Adv Sci (Weinh) ; 11(32): e2403963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924362

RESUMO

Ferroptosis is a form of regulated cell death that can be modulated by small molecules and has the potential for the development of therapeutics for oncology. Although excessive lipid peroxidation is the defining hallmark of ferroptosis, DNA damage may also play a significant role. In this study, a potential mechanistic role for MIF in homologous recombination (HR) DNA repair is identified. The inhibition or genetic depletion of MIF or other HR proteins, such as breast cancer type 1 susceptibility protein (BRCA1), is demonstrated to significantly enhance the sensitivity of cells to ferroptosis. The interference with HR results in the translocation of the tumor suppressor protein p53 to the mitochondria, which in turn stimulates the production of reactive oxygen species. Taken together, the findings demonstrate that MIF-directed small molecules enhance ferroptosis via a putative MIF-BRCA1-RAD51 axis in HR, which causes resistance to ferroptosis. This suggests a potential novel druggable route to enhance ferroptosis by targeted anticancer therapeutics in the future.


Assuntos
Reparo do DNA , Ferroptose , Fatores Inibidores da Migração de Macrófagos , Ferroptose/efeitos dos fármacos , Humanos , Reparo do DNA/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Linhagem Celular Tumoral , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Espécies Reativas de Oxigênio/metabolismo
3.
J Med Chem ; 66(13): 8767-8781, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37352470

RESUMO

Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and essential signaling protein associated with inflammation and cancers. One of the newly described roles of MIF is binding to apoptosis-inducing factor (AIF) that "brings" cells to death in pathological conditions. The interaction between MIF and AIF and their nuclear translocation stands as a central event in parthanatos. However, classical competitive MIF tautomerase inhibitors do not interfere with MIF functions in parthanatos. In this study, we employed a pharmacophore-switch to provide allosteric MIF tautomerase inhibitors that interfere with the MIF/AIF co-localization. Synthesis and screening of a focused compound collection around the 1,2,3-triazole core enabled identification of the allosteric tautomerase MIF inhibitor 6y with low micromolar potency (IC50 = 1.7 ± 0.1 µM). This inhibitor prevented MIF/AIF nuclear translocation and protects cells from parthanatos. These findings indicate that alternative modes to target MIF hold promise to investigate MIF function in parthanatos-mediated diseases.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Parthanatos , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator de Indução de Apoptose , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo
4.
J Med Chem ; 65(3): 2059-2077, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041425

RESUMO

The homologous cytokines macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT or MIF2) play key roles in cancers. Molecules binding to the MIF tautomerase active site interfere with its biological activity. In contrast, the lack of potent MIF2 inhibitors hinders the exploration of MIF2 as a drug target. In this work, screening of a focused compound collection enabled the identification of a MIF2 tautomerase inhibitor R110. Subsequent optimization provided inhibitor 5d with an IC50 of 1.0 µM for MIF2 tautomerase activity and a high selectivity over MIF. 5d suppressed the proliferation of non-small cell lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cell cultures, which can be explained by the induction of cell cycle arrest via deactivation of the mitogen-activated protein kinase (MAPK) pathway. Thus, we discovered and characterized MIF2 inhibitors (5d) with improved antiproliferative activity in cellular models systems, which indicates the potential of targeting MIF2 in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Pirimidinonas/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Relação Estrutura-Atividade
5.
Drug Discov Today ; 26(7): 1728-1734, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33746067

RESUMO

Epigenetic mechanisms are important for the regular development and maintenance of the tissue-specific expression of cytokine genes. One of the crucial cytokines involved in cancer and inflammation is macrophage migration inhibitory factor (MIF), which triggers the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways by binding to CD74 and other receptors. Altered expression of this cytokine and altered activity states of the connected pathways are linked to inflammatory disease and cancer. Therapeutic strategies based on epigenetic mechanisms have the potential to regulate MIF-mediated signaling in cancer and inflammation.


Assuntos
Inflamação/genética , Fatores Inibidores da Migração de Macrófagos/genética , Neoplasias/genética , Animais , Epigênese Genética , Humanos , Transdução de Sinais
6.
Bioorg Med Chem Lett ; 29(1): 40-46, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455149

RESUMO

Series of structurally diverse 2-imidazoline derivatives have been synthesized by condensation of substituted aldehydes with ethylenediamine, Pd-catalyzed N-arylation of 2-imidazolines and by the formation of 1,2,4-oxadiazoles and benzoxazepines from 2-imidazoline-containing precursors. The 2-imidazoline derivatives were evaluated as potential inhibitors of human monoamine oxidase (MAO) A and B. Among the 2-imidazolines, good potency inhibitors were discovered with compound 9p (IC50 = 0.012 µM) being the most potent MAO-B inhibitor, while compound 9d (IC50 = 0.751 µM) was the most potent MAO-A inhibitor of the series. These potencies are in the same range as those of reference MAO inhibitors used in the clinic. Among 33 compounds evaluated, 13 exhibited IC50 values in the submicromolar range for the inhibition of an MAO isoform. It is postulated that the imidazoline moieties of some of these inhibitors may be recognized by the imidazoline I2-binding site of MAO. Good potency MAO inhibitors may be useful for the treatment of neuropsychiatric and neurodegenerative disorders such as depression and Parkinson's disease, and future application for the treatment of prostate cancer, congestive heart failure and Alzheimer's disease. In addition, high potency 2-imidazoline-derived MAO inhibitors may be used as potential probes for the imidazoline binding sites of the MAOs, as well as to determine alternative binding regions of imidazoline within the MAO active site.


Assuntos
Imidazóis/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA