Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 20(9): 1063-1076, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474714

RESUMO

Germinal centers (GCs) are essential for the establishment of long-lasting antibody responses. GC B cells rely on post-transcriptional RNA mechanisms to translate activation-associated transcriptional programs into functional changes in the cell proteome. However, the critical proteins driving these key mechanisms are still unknown. Here, we show that the RNA binding proteins TIA1 and TIAL1 are required for the generation of long-lasting GC responses. TIA1- and TIAL1-deficient GC B cells fail to undergo antigen-mediated positive selection, expansion and differentiation into B-cell clones producing high-affinity antibodies. Mechanistically, TIA1 and TIAL1 control the transcriptional identity of dark- and light-zone GC B cells and enable timely expression of the prosurvival molecule MCL1. Thus, we demonstrate here that TIA1 and TIAL1 are key players in the post-transcriptional program that selects high-affinity antigen-specific GC B cells.


Assuntos
Apoptose , Centro Germinativo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Animais , Camundongos , Antígenos/metabolismo , Linfócitos B , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Camundongos Endogâmicos C57BL , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Nat Commun ; 12(1): 6556, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772950

RESUMO

The germinal centre (GC) is required for the generation of high affinity antibodies and immunological memory. Here we show that the RNA binding protein HuR has an essential function in GC B cells to sustain the GC response. In its absence, the GC reaction and production of high-affinity antibody is severely impaired. Mechanistically, HuR affects the transcriptome qualitatively and quantitatively. The expression and splicing patterns of hundreds of genes are altered in the absence of HuR. Among these genes, HuR is required for the expression of Myc and a Myc-dependent transcriptional program that controls GC B cell proliferation and Ig somatic hypermutation. Additionally, HuR regulates the splicing and abundance of mRNAs required for entry into and transition through the S phase of the cell cycle, and it modulates a gene signature associated with DNA deamination protecting GC B cells from DNA damage and cell death.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Centro Germinativo/metabolismo , Animais , Proliferação de Células/fisiologia , Biologia Computacional , Ensaio de Imunoadsorção Enzimática , Camundongos , Análise de Sequência de RNA
3.
J Immunol ; 191(1): 395-406, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23733875

RESUMO

Cyclooxygenase (Cox)-2 dependent PGs modulate several functions in many pathophysiological processes, including migration of immune cells. In this study, we addressed the role of Cox-2 in macrophage migration by using in vivo and in vitro models. Upon thioglycolate challenge, CD11b(+) F4/80(+) macrophages showed a diminished ability to migrate to the peritoneal cavity in cox-2(-/-) mice. In vivo migration of cox-2(-/-) macrophages from the peritoneal cavity to lymph nodes, as well as cell adhesion to the mesothelium, was reduced in response to LPS. In vitro migration of cox-2(-/-) macrophages toward MCP-1, RANTES, MIP-1α, or MIP-1ß, as well as cell adhesion to ICAM-1 or fibronectin, was impaired. Defects in cell migration were not due to changes in chemokine receptor expression. Remarkably, cox-2(-/-) macrophages showed a deficiency in focal adhesion formation, with reduced phosphorylation of paxillin (Tyr(188)). Interestingly, expression of the p110γ catalytic subunit of PI3K was severely reduced in the absence of Cox-2, leading to defective Akt phosphorylation, as well as cdc42 and Rac-1 activation. Our results indicate that the paxillin/p110γ-PI3K/Cdc42/Rac1 axis is defective in cox-2(-/-) macrophages, which results in impaired cell adhesion and migration.


Assuntos
Inibição de Migração Celular/imunologia , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Ciclo-Oxigenase 2/deficiência , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Fosfatidilinositol 3-Quinases/deficiência , Transdução de Sinais/imunologia , Animais , Adesão Celular/genética , Adesão Celular/imunologia , Inibição de Migração Celular/genética , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/fisiologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/genética , Proteína cdc42 de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP/deficiência
4.
Biochem J ; 443(2): 451-61, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22268508

RESUMO

PG (prostaglandin) E2 plays an important role in the modulation of the immune response and the inflammatory process. In the present study, we describe a PGE2 positive feedback for COX (cyclo-oxygenase)-2 and mPGES-1 [microsomal PGES (PGE synthase)-1] expression in the macrophage cell line RAW 264.7. Our results show that PGE2 induces COX-2 and mPGES-1 expression, an effect mimicked by dbcAMP (dibutyryl-cAMP) or forskolin. Furthermore, the cAMP signalling pathway co-operates with LPS (lipopolysaccharide) in the induction of COX-2 and mPGES-1 transcriptional activation. Analysis of the involvement of PGE receptors [EPs (E-prostanoids)] showed that incubation with EP2 agonists up-regulated both COX2 and mPGES-1 mRNA levels. Moreover, EP2 receptor overexpression enhanced the transcriptional activation of COX2 and mPGES-1 promoters. This induction was repressed by the PKA (protein kinase A) inhibitor H89. Activation of the PGE2/EP2/PKA signalling pathway induced the phosphorylation of CREB [CRE (cAMP-response element)-binding protein] in macrophages and stimulated the specific binding of this transcription factor to COX2 and mPGES-1 promoters. Deletion or mutation of potential CRE sites in both promoters diminished their transcriptional activity. In summary, the results of the present study demonstrate that activation of PKA/CREB signalling through the EP2 receptor by PGE2 plays a key role in the expression of COX-2 and mPGES-1 in activated macrophages.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Oxirredutases Intramoleculares/genética , Macrófagos/imunologia , Camundongos , Regiões Promotoras Genéticas , Prostaglandina-E Sintases , Transcrição Gênica , Ativação Transcricional , Regulação para Cima
5.
Cell Signal ; 22(10): 1427-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20546888

RESUMO

Prostaglandin (PG) E(2) is a potent lipid mediator that plays an essential role in inflammation, fever and pain. It is produced from arachidonic acid (AA) by a cascade of enzymatic reactions involving cyclooxygenases (COX-1 and -2) and prostaglandin E synthases (cPGES, mPGES-1 and -2). Functional coupling of the inducible enzymes COX-2 and mPGES-1 has been proposed for increased production of PGE(2) in different cell types. PGE(2) produced by macrophages plays an essential role in the pathogenesis of inflammatory diseases. Here, we have investigated the mechanisms involved in the regulation of COX-2 and mPGES-1 expressions in murine macrophages upon bacterial lipopolysaccharide (LPS) treatment. LPS stimulation induced the coordinated synthesis of COX-2 and mPGES-1 that resulted in an enhanced production of PGE(2) in RAW 264.7 macrophages. Furthermore, we show the involvement of NF-kappaB and Egr-1 transcription factors in the transcriptional induction of these enzymes. LPS treatment promoted specific binding of NF-kappaB to both COX-2 and mPGES-1 promoters. Site-directed mutagenesis, electrophoretic mobility shift assays and ChIP assays allowed the identification of a sequence acting as a NF-kappaB recognition site in the murine mPGES-1 promoter. Furthermore, LPS induced the expression of Egr-1 that cooperated with NF-kappaB in the up-regulation of COX-2 and mPGES-1. Inhibition of Egr-1 expression reduced substantially LPS-mediated induction of COX-2 and mPGES-1 expression, resulting in a decrease in PGE(2) production. Our findings point out to Egr-1 and NF-kappaB cooperation as determinant for PGE2 synthesis by macrophages in inflammatory processes through the coordinated regulation of COX-2 and mPGES-1.


Assuntos
Ciclo-Oxigenase 2/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Oxirredutases Intramoleculares/genética , Macrófagos/enzimologia , NF-kappa B/metabolismo , Animais , Ciclo-Oxigenase 2/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Oxirredutases Intramoleculares/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Regiões Promotoras Genéticas , Prostaglandina-E Sintases , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA