Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Toxics ; 12(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38393244

RESUMO

Several epidemiological studies have demonstrated that particulate matter (PM) in air pollution can be involved in the genesis or aggravation of different cardiovascular, respiratory, perinatal, and cancer diseases. This study assessed the in vitro effects of PM10 on the secretion of cytokines by a human monocytic cell line (THP-1). We compared the chemotactic, pro-inflammatory, and anti-inflammatory cytokines induced by PM10 collected for two years during three different seasons in five different Mexico City locations. MIP-1α, IP-10, MCP-1, TNF-α, and VEGF were the main secretion products after stimulation with 80 µg/mL of PM10 for 24 h. The THP-1 cells showed a differential response to PM10 obtained in the different sites of Mexico City. The PM10 from the north and the central city areas induced a higher pro-inflammatory cytokine response than those from the south. Seasonal pro-inflammatory cytokine secretion always exceeded anti-inflammatory secretion. The rainy-season-derived particles caused the lowest pro-inflammatory effects. We concluded that toxicological assessment of airborne particles provides evidence supporting their potential role in the chronic exacerbation of local or systemic inflammatory responses that may worsen the evolution of some chronic diseases.

2.
Toxicology ; 465: 153026, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774659

RESUMO

Exposure to fine particulate matter (PM2.5) induces airway inflammation and hyperreactivity that lead to asthma. The mechanisms involved are still under investigation. We investigated the effect of resveratrol (3,4',5-trihydroxystilbene) (RES) on airway hyperresponsiveness, inflammation and CYP1A1 protein expression (an aryl hydrocarbon receptor (AhR) target) induced by PM2.5 exposure in an allergic asthma experimental guinea pig model. The polyphenolic compound RES was used due to its antioxidant and anti-inflammatory properties and as an antagonist of the AhR; thus, providing mechanistic insights. Animals were sensitized with aluminum hydroxide and ovalbumin and exposed to filtered air or PM2.5. Exposure to PM2.5 was conducted using a whole-body chamber particle concentrator (5 h/day) for 15 days. Animals received saline solution or RES (10 mg/kg per day) orally for 21 days simultaneously to the OVA challenge or PM2.5 exposure. PM2.5 exposure (mean 433 ± 111 µg/m3 in the exposure chamber) in OVA challenged animals induced an asthma-like phenotype characterized by increased baseline lung resistance (Rrs) and central airway resistance (Rn) in response to acetylcholine (ACh) evaluated using a flexiVent system®. A parallel increase of pro-inflammatory cytokines (IL-6, IL-17, TNF-α and IFN-γ), inflammatory cells (eosinophils and neutrophils) in bronchoalveolar lavage fluid (BALF) and lung CYP1A1 increase also occurred. RES significantly inhibited airway hyperresponsiveness, inflammation, and CYP1A1 protein expression in the OVA-challenged PM2.5 exposed animals. In summary, with the use of RES we demonstrate that PM-induced airway hyperreactivity is modulated by the inflammatory response via the AhR pathway in an allergic asthma guinea pig model.


Assuntos
Asma/induzido quimicamente , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Receptores de Hidrocarboneto Arílico/agonistas , Hidróxido de Alumínio , Animais , Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/imunologia , Asma/metabolismo , Asma/prevenção & controle , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Cobaias , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Ovalbumina , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/prevenção & controle , Receptores de Hidrocarboneto Arílico/metabolismo , Resveratrol/farmacologia , Transdução de Sinais
3.
Artigo em Inglês | MEDLINE | ID: mdl-33137878

RESUMO

Acute leukemia is the most common childhood cancer and has been associated with exposure to environmental carcinogens. This study aimed to identify clusters of acute childhood leukemia (ACL) cases and analyze their relationship with proximity to industrial sources of air pollution in three capital cities in Colombia during 2000-2015. Incident ACL cases were obtained from the population cancer registries for the cities of Bucaramanga, Cali, and Medellín. The inventory of industrial sources of emissions to the air was obtained from the regional environmental authorities and industrial conglomerates were identified. The Kulldorf's circular scan test was used to detect city clusters and to identify clusters around industrial conglomerates. Multivariable spatial modeling assessed the effect of distance and direction from the industrial conglomerates controlling for socioeconomic status. We identified industrials sectors within a buffer of 1 km around industrial conglomerates related to the ACL clusters. Incidence rates showed geographical heterogeneity with low spatial autocorrelation within cities. The spatio-temporal tests identified one cluster in each city. The industries located within 1 km around the ACL clusters identified in the three cities represent different sectors. Exposure to air pollution from industrial sources might be contributing to the incidence of ACL cases in urban settings in Colombia.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Monitoramento Ambiental , Leucemia/induzido quimicamente , Características de Residência/estatística & dados numéricos , Poluição do Ar/análise , Criança , Cidades , Colômbia/epidemiologia , Feminino , Humanos , Leucemia/epidemiologia , Masculino , Material Particulado/análise , Análise de Pequenas Áreas
4.
BMJ Open ; 10(1): e033296, 2020 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32014876

RESUMO

OBJECTIVE: Using a summary measure of health inequalities, this study evaluated the distribution of adverse birth outcomes (ABO) and related maternal risk factors across area-level socioeconomic status (SES) gradients in urban and rural Alberta, Canada. DESIGN: Cross-sectional study using a validated perinatal clinical registry and an area-level SES. SETTING: The study was conducted in Alberta, Canada. Data about ABO and related maternal risk factors were obtained from the Alberta Perinatal Health Program between 2006 and 2012. An area-level SES index derived from census data (2006) was linked to the postal code at delivery. PARTICIPANTS: Women (n=3 30 957) having singleton live births with gestational age ≥22 weeks. PRIMARY AND SECONDARY OUTCOME MEASURES: We estimated concentration indexes to assess inequalities across SES gradients in both rural and urban areas (CIdxR and CIdxU, respectively) for spontaneous preterm birth (PTB), small for gestational age (SGA), large for gestational age (LGA), gestational hypertension, gestational diabetes, smoking and substance use during pregnancy and pre-pregnancy weight >91 kg. RESULTS: The highest health inequalities disfavouring low SES groups were identified for substance abuse and smoking in rural areas (CIdxR-0.38 and -0.23, respectively). Medium inequalities were identified for LGA (CIdxR-0.08), pre-pregnancy weight >91 kg (CIdxR-0.07), substance use (CIdxU-0.15), smoking (CIdxU-0.14), gestational diabetes (CIdxU-0.10) and SGA (CIdxU-0.07). Low inequalities were identified for PTB (CIdxR-0.05; CIdxU-0.05) and gestational diabetes (CIdxR-0.04). Inequalities disfavouring high SES groups were identified for gestational hypertension (CIdxR+0.04), SGA (CIdxR+0.03) and LGA (CIdxU+0.03). CONCLUSIONS: ABO and related maternal risk factors were unequally distributed across the socioeconomic gradient in urban-rural settings, with the greatest concentrations in lower SES groups of rural areas. Future research is needed on underlying mechanisms driving SES gradients in perinatal health across the rural-urban spectrum.


Assuntos
Nascimento Prematuro/epidemiologia , População Rural , População Urbana , Adulto , Alberta/epidemiologia , Estudos Transversais , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Gravidez , Resultado da Gravidez , Prevalência , Estudos Retrospectivos , Fatores Socioeconômicos
5.
PLoS One ; 14(7): e0219122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295271

RESUMO

Exposure to air pollution particulate matter (PM) and tuberculosis (TB) are two of the leading global public health challenges affecting low and middle income countries. An estimated 4.26 million premature deaths are attributable to household air pollution and an additional 4.1 million to outdoor air pollution annually. Mycobacterium tuberculosis (M.tb) infects a large proportion of the world's population with the risk for TB development increasing during immunosuppressing conditions. There is strong evidence that such immunosuppressive conditions develop during household air pollution exposure, which increases rates of TB development. Exposure to urban air pollution has been shown to alter the outcome of TB therapy. Here we examined whether in vitro exposure to urban air pollution PM alters human immune responses to M.tb. PM2.5 and PM10 (aerodynamic diameters <2.5µm, <10µm) were collected monthly from rainy, cold-dry and warm-dry seasons in Iztapalapa, a highly populated TB-endemic municipality of Mexico City with elevated outdoor air pollution levels. We evaluated the effects of seasonality and size of PM on cytotoxicity and antimycobacterial host immunity in human peripheral blood mononuclear cells (PBMC) from interferon gamma (IFN-γ) release assay (IGRA)+ and IGRA- healthy study subjects. PM10 from cold-dry and warm-dry seasons induced the highest cytotoxicity in PBMC. With the exception of PM2.5 from the cold-dry season, pre-exposure to all seasonal PM reduced M.tb phagocytosis by PBMC. Furthermore, M.tb-induced IFN-γ production was suppressed in PM2.5 and PM10-pre-exposed PBMC from IGRA+ subjects. This observation coincides with the reduced expression of M.tb-induced T-bet, a transcription factor regulating IFN-γ expression in T cells. Pre-exposure to PM10 compared to PM2.5 led to greater loss of M.tb growth control. Exposure to PM2.5 and PM10 collected in different seasons differentially impairs M.tb-induced human host immunity, suggesting biological mechanisms underlying altered M.tb infection and TB treatment outcomes during air pollution exposures.


Assuntos
Poluentes Atmosféricos/toxicidade , Citotoxicidade Imunológica/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Material Particulado/toxicidade , Adolescente , Adulto , Idoso , Cidades , Exposição Ambiental/efeitos adversos , Feminino , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Técnicas In Vitro , Interferon gama/biossíntese , Interleucina-1beta/biossíntese , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , México , Pessoa de Meia-Idade , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Estações do Ano , Proteínas com Domínio T/imunologia , Saúde da População Urbana , Adulto Jovem
6.
J Environ Health Sci Eng ; 17(1): 433-444, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31321054

RESUMO

Particulate matter (PM) as the carcinogenic air pollutants can lead to aggravated health outcomes. Epidemiological studies demonstrated that PM can be engaged in different diseases such as cardiovascular, respiratory and cancer. The in vitro secretion of proinflammatory cytokines by human peripheral blood mononuclear cells (PBMCs) has been used to assess the effects of PM with an aerodynamic diameter < 10 µm (PM10). This study compared the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1-beta (IL1-ß) secretions of PBMCs exposed to PM10 of dust storm and inversion. We collected PM10 samples during the spring and autumn seasons in two locations. Isolated PBMCs were exposed separately to 50, 150, and 300 µg/ml of different type of PM10 for 4 and 24 h. The mean concentrations of TNF-α for the PM of dust storm and inversion were 6305.61 ± 2421 and 6651.74 ± 2820, respectively. Also the mean concentrations of IL1-ß for the PM of dust storm and inversion were 556.86 ± 162 and 656.35 ± 196, respectively. Furthermore, these values for the production of IL-6 were 12,655 ± 5661 and 16,685 ± 8069, respectively. Although no significant difference was observed between the PM of dust storm and that of inversion with regard to PBMCs, the results showed a significant increase in the proinflammatory cytokine secretion of both PMs compared with the controls. Moreover, TNF-α, IL1-ß, and IL-6 secreted in cells exposed to PM10 of dust storm were about 10 times more than the controls, these values for cells exposed to PM10 of inversion were around 10, 12, and 14 times more than the controls, respectively. It can be concluded that the PM10 of both dust storm and inversion can play a significant role in proinflammatory cytokine secretion due to its harmful effect on human health. Graphical abstractThis picture shows the Proinflammatory cytokine producing potential of PM10 with two sources (dust storm and urban air pollution) in exposure with human PBMCs in vitro.

7.
Thorax ; 74(7): 675-683, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31036772

RESUMO

RATIONALE: Associations between urban (outdoor) airborne particulate matter (PM) exposure and TB and potential biological mechanisms are poorly explored. OBJECTIVES: To examine whether in vivo exposure to urban outdoor PM in Mexico City and in vitro exposure to urban outdoor PM2.5 (< 2.5 µm median aerodynamic diameter) alters human host immune cell responses to Mycobacterium tuberculosis. METHODS: Cellular toxicity (flow cytometry, proliferation assay (MTS assay)), M. tuberculosis and PM2.5 phagocytosis (microscopy), cytokine-producing cells (Enzyme-linked immune absorbent spot (ELISPOT)), and signalling pathway markers (western blot) were examined in bronchoalveolar cells (BAC) and peripheral blood mononuclear cells (PBMC) from healthy, non-smoking, residents of Mexico City (n=35; 13 female, 22 male). In vivo-acquired PM burden in alveolar macrophages (AM) was measured by digital image analysis. MEASUREMENTS AND MAIN RESULTS: In vitro exposure of AM to PM2.5 did not affect M. tuberculosis phagocytosis. High in vivo-acquired AM PM burden reduced constitutive, M. tuberculosis and PM-induced interleukin-1ß production in freshly isolated BAC but not in autologous PBMC while it reduced constitutive production of tumour necrosis factor-alpha in both BAC and PBMC. Further, PM burden was positively correlated with constitutive, PM, M. tuberculosis and purified protein derivative (PPD)-induced interferon gamma (IFN-γ) in BAC, and negatively correlated with PPD-induced IFN-γ in PBMC. CONCLUSIONS: Inhalation exposure to urban air pollution PM impairs important components of the protective human lung and systemic immune response against M. tuberculosis. PM load in AM is correlated with altered M. tuberculosis-induced cytokine production in the lung and systemic compartments. Chronic PM exposure with high constitutive expression of proinflammatory cytokines results in relative cellular unresponsiveness.


Assuntos
Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Material Particulado/efeitos adversos , Saúde da População Urbana/estatística & dados numéricos , Adulto , Líquido da Lavagem Broncoalveolar/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Citocinas/biossíntese , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Citometria de Fluxo/métodos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , México , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/análise , Material Particulado/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Adulto Jovem
8.
Environ Pollut ; 229: 412-422, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28622661

RESUMO

In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Carcinogênese , Exposição Ambiental/estatística & dados numéricos , Neoplasias Pulmonares/epidemiologia , Material Particulado/toxicidade , Carcinógenos , Instabilidade Genômica , Humanos , Pulmão/efeitos dos fármacos , Neoplasias , Fatores de Risco , Fumar
9.
Toxicol Lett ; 272: 29-37, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28279687

RESUMO

Airborne particulate matter with an aerodynamic diameter ≤10µm (PM10) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM10 exposure in A549 lung epithelial cells. Results showed that 10µg/cm2 of PM10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM10 exposure could contribute to the understanding of PM10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype.


Assuntos
Poluentes Atmosféricos/toxicidade , Citoesqueleto/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Material Particulado/toxicidade , Quinases Associadas a rho/metabolismo , Células A549 , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Humanos , Tamanho da Partícula , Transdução de Sinais , Fibras de Estresse/metabolismo
10.
Environ Pollut ; 214: 646-656, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27131825

RESUMO

Atmospheric particulate matter with aerodynamic diameter ≤10 µm (PM10) is a risk factor for the development of lung cancer, but cellular pathways are not completely understood. STAT3 is a p21(Waf1/Cip1) transcription factor and is associated with proliferation and cell survival and is upregulated in lung cancer. PM10 exposure induces p21(Waf1/Cip1) expression, which could be related to STAT3 activation. The aims of this work were to investigate whether STAT3 was activated on lung epithelial cells after PM10 exposure and to determine whether or not STAT3 could have an impact on cell cycle distribution and cell survival. Our results showed that PM10 induced STAT3 activation through Src and PKCζ kinases, and it is partially responsible for the p21(Waf1/Cip1) induction that was also observed. Moreover, PM10 induced G1-G0 cell cycle arrest. The inhibition of STAT3 phosphorylation prevented cell cycle arrest and triggered apoptosis. These results suggest that PM10 exposure might activate a survival pathway related to STAT3 activation, similar to what has been described as part of the immune system and apoptosis evasion during tumor promotion and development.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Pulmonares/etiologia , Pulmão/efeitos dos fármacos , Material Particulado/farmacologia , Fator de Transcrição STAT3/metabolismo , Ciclo Celular/efeitos dos fármacos , Divisão Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Tamanho da Partícula , Proteína Quinase C/metabolismo , Ativação Transcricional , Quinases da Família src/metabolismo
11.
Front Immunol ; 7: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834745

RESUMO

Urban air pollution is a serious worldwide problem due to its impact on human health. In the past 60 years, growing evidence established a correlation between exposure to air pollutants and the developing of severe respiratory diseases. Recently particulate matter (PM) is drawing more public attention to various aspects including historical backgrounds, physicochemical characteristics, and its pathological role. Therefore, this review is focused on these aspects. The most famous air pollution disaster happened in London on December 1952; it has been calculated that more than 4,000 deaths occurred during this event. Air pollution is a complex mix of gases and particles. Gaseous pollutants disseminate deeply into the alveoli, allowing its diffusion through the blood-air barrier to several organs. Meanwhile, PM is a mix of solid or liquid particles suspended in the air. PM is deposited at different levels of the respiratory tract, depending on its size: coarse particles (PM10) in upper airways and fine particles (PM2.5) can be accumulated in the lung parenchyma, inducing several respiratory diseases. Additionally to size, the composition of PM has been associated with different toxicological outcomes on clinical and epidemiological, as well as in vivo and in vitro animal and human studies. PM can be constituted by organic, inorganic, and biological compounds. All these compounds are capable of modifying several biological activities, including alterations in cytokine production, coagulation factors balance, pulmonary function, respiratory symptoms, and cardiac function. It can also generate different modifications during its passage through the airways, like inflammatory cells recruitment, with the release of cytokines and reactive oxygen species (ROS). These inflammatory mediators can activate different pathways, such as MAP kinases, NF-κB, and Stat-1, or induce DNA adducts. All these alterations can mediate obstructive or restrictive respiratory diseases like asthma, COPD, pulmonary fibrosis, and even cancer. In 2013, outdoor air pollution was classified as Group 1 by IARC based on all research studies data about air pollution effects. Therefore, it is important to understand how PM composition can generate several pulmonary pathologies.

12.
Environ Health Perspect ; 124(4): 406-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26372663

RESUMO

BACKGROUND: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. OBJECTIVES: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. METHODS: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. RESULTS: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. CONCLUSIONS: Variations in PM soil and PAH content underlie seasonal and PM size-related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. CITATION: Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O'Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406-412; http://dx.doi.org/10.1289/ehp.1409287.


Assuntos
Poluentes Atmosféricos/toxicidade , Interleucina-6/metabolismo , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Estações do Ano , Poluentes do Solo/toxicidade , Solo/química , Fator de Necrose Tumoral alfa/metabolismo , Poluentes Atmosféricos/química , Linhagem Celular Tumoral , Cidades , Endotoxinas/toxicidade , Monitoramento Ambiental , Humanos , Metais/química , México , Tamanho da Partícula , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química
13.
Data Brief ; 4: 353-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26217815

RESUMO

The PM10 airborne particulate matter with an aerodynamic diameter ≤10 µm is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM10 collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM10 was collected with a high-volume sampler in the above mentioned locations and both types of PM10 sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM10 content from IZ and CZ displayed 138.4 UE/mg and 170.4 UE/mg of PM10, respectively.

14.
Toxicol Lett ; 237(3): 167-73, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26047787

RESUMO

Airborne particulate matter with an aerodynamic diameter ≤ 10 µm (PM10) is a risk factor for the development of lung diseases and cancer. The aim of this work was to identify alterations in airway epithelial (A549) cells induced by PM10 that could explain how subtoxic exposure (10 µg/cm(2)) promotes a more aggressive in vitro phenotype. Our results showed that cells exposed to PM10 from an industrial zone (IZ) and an urban commercial zone (CZ) induced an increase in protease activity and invasiveness; however, the cell mechanism is different, as only PM10 from CZ up-regulated the activity of metalloproteases MMP-2 and MMP-9 and disrupted E-cadherin/ß-catenin expression after 48 h of exposure. These in vitro findings are relevant in terms of the mechanism action of PM10 in lung epithelial cells, which could be helpful in understanding the pathogenesis of some human illness associated with highly polluted cities.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Material Particulado/toxicidade , Poluentes Atmosféricos/toxicidade , Antígenos CD , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Pulmão/citologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Fatores de Risco , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
15.
Environ Pollut ; 203: 175-182, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25909326

RESUMO

The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 µm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteínas Proto-Oncogênicas c-jun/metabolismo , Linhagem Celular Tumoral , Cidades , Citocromo P-450 CYP1B1/metabolismo , Adutos de DNA/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , México , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/metabolismo , Resveratrol , Estilbenos/farmacologia
16.
Infect Immun ; 83(6): 2507-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25847963

RESUMO

Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 µm (PM2.5) and 10 µm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human ß-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Mycobacterium tuberculosis/fisiologia , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Poluentes Atmosféricos/química , Linhagem Celular Tumoral , DNA Complementar/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata , México , Material Particulado/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo
17.
J Toxicol Environ Health A ; 77(19): 1164-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119738

RESUMO

Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.


Assuntos
Poluentes Atmosféricos/toxicidade , Inflamação/patologia , Lesão Pulmonar/patologia , Material Particulado/toxicidade , Doença Aguda , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiocina CXCL2/metabolismo , Cidades , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Masculino , México , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Endogâmicos WKY , Trombose/induzido quimicamente , Trombose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Vasoconstrição/efeitos dos fármacos
18.
Toxicol Lett ; 225(1): 12-9, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24291038

RESUMO

The exposure to particulate matter with a mean aerodynamic diameter ≤10 µm (PM10) from urban zones is considered to be a risk factor in the development of cancer. The aim of this work was to determine if PM10 exposure induces factors related to the acquisition of a neoplastic phenotype, such as cytoskeletal remodeling, changes in the subcellular localization of p21(CIP1/WAF1), an increase in ß-galactosidase activity and changes in cell cycle. To test our hypothesis, PM10 from an industrial zone (IZ) and a commercial zone (CZ) were collected, and human adenocarcinoma lung cell cultures (A549) were exposed to a sublethal PM10 concentration (10 µg/cm(2)) for 24 h and 48 h. The results showed that PM10 exposure induced an increase in F-actin stress fibers and caused the cytoplasmic stabilization of p21(CIP1/WAF1) via phosphorylation at Thr(145) and Ser(146) and the phosphorylation of ERK1/2 on Thr(202). Changes in the cell cycle or apoptosis were not observed, but an increase in ß-galactosidase activity was detected. The PM10 from CZ caused more dramatic effects in lung cells. We conclude that PM10 exposure induced cytoplasmic p21(CIP1/WAF1) retention, ERK1/2 activation, cytoskeleton remodeling and the acquisition of a senescence-like phenotype in lung cells. These alterations could have mechanistic implications regarding the carcinogenic potential of PM10.


Assuntos
Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citoesqueleto/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Material Particulado/toxicidade , Actinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/enzimologia , Citoesqueleto/enzimologia , Citoesqueleto/patologia , Ativação Enzimática , Humanos , Pulmão/enzimologia , Pulmão/patologia , Tamanho da Partícula , Fenótipo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/enzimologia , Fibras de Estresse/patologia , Fatores de Tempo , beta-Galactosidase/metabolismo
19.
J Biochem Mol Toxicol ; 27(1): 87-97, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23335408

RESUMO

Spatial variation in particulate matter-related health and toxicological outcomes is partly due to its composition. We studied spatial variability in particle composition and induced cellular responses in Mexico City to complement an ongoing epidemiologic study. We measured elements, endotoxins, and polycyclic aromatic hydrocarbons in two particle size fractions collected in five sites. We compared the in vitro proinflammatory response of J774A.1 and THP-1 cells after exposure to particles, measuring subsequent TNFα and IL-6 secretion. Particle composition varied by site and size. Particle constituents were subjected to principal component analysis, identifying three components: C(1) (Si, Sr, Mg, Ca, Al, Fe, Mn, endotoxin), C(2) (polycyclic aromatic hydrocarbons), and C(3) (Zn, S, Sb, Ni, Cu, Pb). Induced TNFα levels were higher and more heterogeneous than IL-6 levels. Cytokines produced by both cell lines only correlated with C(1) , suggesting that constituents associated with soil induced the inflammatory response and explain observed spatial differences.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Material Particulado/toxicidade , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Animais , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Cidades , Endotoxinas/análise , Monitoramento Ambiental , Humanos , Interleucina-6/metabolismo , México , Camundongos , Tamanho da Partícula , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise de Componente Principal , Testes de Toxicidade , Fator de Necrose Tumoral alfa/metabolismo
20.
Sci Rep ; 2: 275, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355787

RESUMO

Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 µm in diameter (PM(2.5)) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM(2.5) via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm(2)). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA