Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 11(24): 4447-4459, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33205959

RESUMO

Glioblastoma multiforme (GBM) is a primary brain tumor with a very high degree of malignancy and is classified by WHO as a glioma IV. At present, the treatment of patients suffering from GBM is based on surgical resection of the tumor with maximal protection of surrounding tissues followed by radio- and pharmacological therapy using temozolomide as the most frequently recommended drug. This strategy, however, does not guarantee success and has devastating consequences. Testing of new substances or therapies having potential in the treatment of GBM as well as detection of their side effects cannot be done on humans. Animal models of the disease are usually used for these purposes, and one possibility is the implantation of human tumor cells into rodent brains. Such a solution was used in the present study the purpose of which was comparison of elemental anomalies appearing in the brain as a result of implantation of different glioblastoma cell lines. These were two commercially available cell lines (U87MG and T98G), as well as tumor cells taken directly from a patient diagnosed with GBM. Using total reflection X-ray fluorescence we determined the contents of P, S, K, Ca, Fe, Cu, Zn, and Se in implanted-left and intact-right brain hemispheres. The number of elemental anomalies registered for both hemispheres was positively correlated with the invasiveness of GBM cells and was the highest for animals subjected to U87MG cell implantation, which presented significant decrease of P, K, and Cu levels and an increase of Se concentration within the left hemisphere. The abnormality common for all three groups of animals subjected to glioma cell implantation was increased Fe level in the brain, which may result from higher blood supply or the presence of hemorrhaging regions. In the case of the intact hemisphere, elevated Fe concentration may also indicate higher neuronal activity caused by taking over some functions of the left hemisphere impaired as a result of tumor growth.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Encéfalo , Linhagem Celular Tumoral , Humanos , Ratos , Espectrometria por Raios X , Temozolomida
2.
Sci Rep ; 10(1): 15447, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963318

RESUMO

In the paper, the results of the first regular studies of ultra-small iron oxide nanoparticles (IONPs) toxicity in vitro were presented. The influence of PEG-coated NPs with 5 nm magnetite core on six different cell lines was examined. These were: human bronchial fibroblasts, human embryonic kidney cells (HEK293T), two glioblastoma multiforme (GBM) cell lines as well as GBM cells isolated from a brain tumor of patient. Additionally, mouse macrophages were included in the study. The influence of IONPs in three different doses (1, 5 and 25 µg Fe/ml) on the viability, proliferation and migration activity of cells was assessed. Moreover, quantifying the intracellular ROS production, we determined the level of oxidative stress in cells exposed to IONPs. In the paper, for the first time, the effect of Fe in the form of IONPs was compared with the analogical data obtained for iron salts solutions containing the same amount of Fe, on the similar oxidation state. Our results clearly showed that the influence of iron on the living cells strongly depends not only on the used cell line, dose and exposure time but also on the form in which this element was administered to the culture. Notably, nanoparticles can stimulate the proliferation of some cell lines, including glioblastoma multiforme. Compared to Fe salts, they have a stronger negative impact on the viability of the cells tested. Ultra-small NPs, also, more often positively affect cell motility which seem to differ them from the NPs with larger core diameters.


Assuntos
Movimento Celular , Proliferação de Células , Compostos de Ferro/farmacologia , Nanopartículas de Magnetita/administração & dosagem , Teste de Materiais , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Nanopartículas de Magnetita/química , Camundongos , Oxirredução , Tamanho da Partícula
3.
Pharmacol Rep ; 62(6): 1211-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21273680

RESUMO

Preclinical and clinical data indicate the involvement of zinc in the pathophysiology and therapy of depression. A relationship between zinc-deficiency and depression symptoms was recently proposed. The present study investigated alterations in spontaneous locomotor activity and zinc concentrations in the serum, hippocampus and frontal cortex; these alterations were induced by subjecting rats to a zinc-deficient diet, prior subjected after birth to zinc-supplemented diet. Body weight was significantly reduced in animals subjected to the four-week zinc-deficient diet compared to those subjected to the zinc-adequate diet. The two-week zinc-deficient diet induced a significant increase in locomotor activity in all measured time periods (5, 30 and 60 min by 44-62%). The four-week zinc-deficient diet did not affect locomotor activity, while the six-week zinc-deficient diet resulted in a 45% increase in the 5 min time period. Serum zinc concentrations were significantly reduced (by 29%) in animals subjected to the four-week zinc-deficient diet but not in those subjected to the two- or six-week zinc-deficient diets. The zinc-deficient diet did not influence the zinc concentration in the examined brain regions regardless of the length. These results indicate that post-birth supplementation with zinc may protect zinc-deficient diet-induced rapid alterations in zinc homeostasis.


Assuntos
Suplementos Nutricionais , Hipocampo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Compostos de Zinco/administração & dosagem , Zinco/administração & dosagem , Zinco/deficiência , Animais , Peso Corporal , Dieta , Masculino , Minerais/administração & dosagem , Minerais/sangue , Minerais/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Zinco/sangue , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA