Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 14(1): 3256, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332004

RESUMO

This study assesses the feasibility of using a sample-efficient model to investigate radiomics changes over time for predicting progression-free survival in rare diseases. Eighteen high-grade glioma patients underwent two L-3,4-dihydroxy-6-[18F]-fluoro-phenylalanine positron emission tomography (PET) dynamic scans: the first during treatment and the second at temozolomide chemotherapy discontinuation. Radiomics features from static/dynamic parametric images, alongside conventional features, were extracted. After excluding highly correlated features, 16 different models were trained by combining various feature selection methods and time-to-event survival algorithms. Performance was assessed using cross-validation. To evaluate model robustness, an additional dataset including 35 patients with a single PET scan at therapy discontinuation was used. Model performance was compared with a strategy extracting informative features from the set of 35 patients and applying them to the 18 patients with 2 PET scans. Delta-absolute radiomics achieved the highest performance when the pipeline was directly applied to the 18-patient subset (support vector machine (SVM) and recursive feature elimination (RFE): C-index = 0.783 [0.744-0.818]). This result remained consistent when transferring informative features from 35 patients (SVM + RFE: C-index = 0.751 [0.716-0.784], p = 0.06). In addition, it significantly outperformed delta-absolute conventional (C-index = 0.584 [0.548-0.620], p < 0.001) and single-time-point radiomics features (C-index = 0.546 [0.512-0.580], p < 0.001), highlighting the considerable potential of delta radiomics in rare cancer cohorts.


Assuntos
Glioma , Radiômica , Humanos , Intervalo Livre de Progressão , Glioma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos
2.
Semin Musculoskelet Radiol ; 27(4): 471-479, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37748471

RESUMO

Focal bone lesions are frequent, and management greatly depends on the characteristics of their images. After briefly discussing the required work-up, we analyze the most relevant imaging signs for assessing potential aggressiveness. We also describe the imaging aspects of the various types of lesion matrices and their clinical implications.


Assuntos
Doenças Ósseas , Doenças das Cartilagens , Humanos
3.
Eur Radiol ; 33(10): 6817-6827, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37188883

RESUMO

OBJECTIVES: To qualitatively and quantitatively compare a single breath-hold fast half-Fourier single-shot turbo spin echo sequence with deep learning reconstruction (DL HASTE) with T2-weighted BLADE sequence for liver MRI at 3 T. METHODS: From December 2020 to January 2021, patients with liver MRI were prospectively included. For qualitative analysis, sequence quality, presence of artifacts, conspicuity, and presumed nature of the smallest lesion were assessed using the chi-squared and McNemar tests. For quantitative analysis, number of liver lesions, size of the smallest lesion, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in both sequences were assessed using the paired Wilcoxon signed-rank test. Intraclass correlation coefficients (ICCs) and kappa coefficients were used to assess agreement between the two readers. RESULTS: One hundred and twelve patients were evaluated. Overall image quality (p = .006), artifacts (p < .001), and conspicuity of the smallest lesion (p = .001) were significantly better for the DL HASTE sequence than for the T2-weighted BLADE sequence. Significantly more liver lesions were detected with the DL HASTE sequence (356 lesions) than with the T2-weighted BLADE sequence (320 lesions; p < .001). CNR was significantly higher for the DL HASTE sequence (p < .001). SNR was higher for the T2-weighted BLADE sequence (p < .001). Interreader agreement was moderate to excellent depending on the sequence. Of the 41 supernumerary lesions visible only on the DL HASTE sequence, 38 (93%) were true-positives. CONCLUSION: The DL HASTE sequence can be used to improve image quality and contrast and reduces artifacts, allowing the detection of more liver lesions than with the T2-weighted BLADE sequence. CLINICAL RELEVANCE STATEMENT: The DL HASTE sequence is superior to the T2-weighted BLADE sequence for the detection of focal liver lesions and can be used in daily practice as a standard sequence. KEY POINTS: • The half-Fourier acquisition single-shot turbo spin echo sequence with deep learning reconstruction (DL HASTE sequence) has better overall image quality, reduced artifacts (particularly motion artifacts), and improved contrast, allowing the detection of more liver lesions than with the T2-weighted BLADE sequence. • The acquisition time of the DL HASTE sequence is at least eight times faster (21 s) than that of the T2-weighted BLADE sequence (3-5 min). • The DL HASTE sequence could replace the conventional T2-weighted BLADE sequence to meet the growing indication for hepatic MRI in clinical practice, given its diagnostic and time-saving performance.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Artefatos
4.
Cancers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497245

RESUMO

Purpose: This study aims to investigate the effects of applying the point spread function deconvolution (PSFd) to the radiomics analysis of dynamic L-3,4-dihydroxy-6-[18F]-fluoro-phenyl-alanine (18F-FDOPA) positron emission tomography (PET) images, to non-invasively identify isocitrate dehydrogenase (IDH) mutated and/or 1p/19q codeleted gliomas. Methods: Fifty-seven newly diagnosed glioma patients underwent dynamic 18F-FDOPA imaging on the same digital PET system. All images were reconstructed with and without PSFd. An L1-penalized (Lasso) logistic regression model, with 5-fold cross-validation and 20 repetitions, was trained with radiomics features extracted from the static tumor-to-background-ratio (TBR) and dynamic time-to-peak (TTP) parametric images, as well as a combination of both. Feature importance was assessed using Shapley additive explanation values. Results: The PSFd significantly modified 95% of TBR, but only 79% of TTP radiomics features. Applying the PSFd significantly improved the ability to identify IDH-mutated and/or 1p/19q codeleted gliomas, compared to PET images not processed with PSFd, with respective areas under the curve of 0.83 versus 0.79 and 0.75 versus 0.68 for a combination of static and dynamic radiomics features (p < 0.001). Without the PSFd, four and eight radiomics features contributed to 50% of the model for detecting IDH-mutated and/or 1p/19q codeleted gliomas, respectively. Application of the PSFd reduced this to three and seven contributive radiomics features. Conclusion: Application of the PSFd to dynamic 18F-FDOPA PET imaging significantly improves the detection of molecular parameters in newly diagnosed gliomas, most notably by modifying TBR radiomics features.

5.
J Nucl Med ; 63(1): 147-157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34016731

RESUMO

The assessment of gliomas by 18F-FDOPA PET imaging as an adjunct to MRI showed high performance by combining static and dynamic features to noninvasively predict the isocitrate dehydrogenase (IDH) mutations and the 1p/19q codeletion, which the World Health Organization classified as significant parameters in 2016. The current study evaluated whether other 18F-FDOPA PET radiomics features further improve performance and the contributions of each of these features to performance. Methods: Our study included 72 retrospectively selected, newly diagnosed glioma patients with 18F-FDOPA PET dynamic acquisitions. A set of 114 features, including conventional static features and dynamic features, as well as other radiomics features, were extracted and machine-learning models trained to predict IDH mutations and the 1p/19q codeletion. Models were based on a machine-learning algorithm built from stable, relevant, and uncorrelated features selected by hierarchic clustering followed by a bootstrapped feature selection process. Models were assessed by comparing area under the curve using a nested cross-validation approach. Feature importance was assessed using Shapley additive explanations values. Results: The best models were able to predict IDH mutations (logistic regression with L2 regularization) and the 1p/19q codeletion (support vector machine with radial basis function kernel) with an area under the curve of 0.831 (95% CI, 0.790-0.873) and 0.724 (95% CI, 0.669-0.782), respectively. For the prediction of IDH mutations, dynamic features were the most important features in the model (time to peak, 35.5%). In contrast, other radiomics features were the most useful for predicting the 1p/19q codeletion (up to 14.5% of importance for the small-zone low-gray-level emphasis). Conclusion:18F-FDOPA PET is an effective tool for the noninvasive prediction of glioma molecular parameters using a full set of amino-acid PET radiomics features. The contribution of each feature set shows the importance of systematically integrating dynamic acquisition for prediction of the IDH mutations as well as developing the use of radiomics features in routine practice for prediction of the 1p/19q codeletion.


Assuntos
Glioma
6.
Biomedicines ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944740

RESUMO

This study evaluates the relevance of 18F-DOPA PET static and dynamic radiomics for differentiation of high-grade glioma (HGG) progression from treatment-related changes (TRC) by comparing diagnostic performances to the current PET imaging standard of care. Eighty-five patients with histologically confirmed HGG and investigated by dynamic 18F-FDOPA PET in two institutions were retrospectively selected. ElasticNet logistic regression, Random Forest and XGBoost machine models were trained with different sets of features-radiomics extracted from static tumor-to-background-ratio (TBR) parametric images, radiomics extracted from time-to-peak (TTP) parametric images, as well as combination of both-in order to discriminate glioma progression from TRC at 6 months from the PET scan. Diagnostic performances of the models were compared to a logistic regression model with TBRmean ± clinical features used as reference. Training was performed on data from the first center, while external validation was performed on data from the second center. Best radiomics models showed only slightly better performances than the reference model (respective AUCs of 0.834 vs. 0.792, p < 0.001). Our current results show similar findings at the multicentric level using different machine learning models and report a marginal additional value for TBR static and TTP dynamic radiomics over the classical analysis based on TBR values.

7.
Magn Reson Med ; 71(3): 1336-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23580148

RESUMO

PURPOSE: High-fidelity 12-lead electrocardiogram (ECG) is important for physiological monitoring of patients during MR-guided intervention and cardiac MRI. Issues in obtaining noncorrupted ECGs inside MRI include a superimposed magneto-hydro-dynamic voltage, gradient switching-induced voltages, and radiofrequency heating. These problems increase with magnetic field. The aim of this study is to develop and clinically validate a 1.5T MRI-conditional 12-lead ECG system. METHODS: The system was constructed with transmission lines to reduce radiofrequency induction and switching circuits to remove induced voltages. Adaptive filters, trained by 12-lead measurements outside MRI and in two orientations inside MRI, were used to remove the magneto-hydro-dynamic voltage. The system was tested on 10 (one exercising) volunteers and four arrhythmia patients. RESULTS: Switching circuits removed most imaging-induced voltages (residual noise <3% of the R-wave). Magneto-hydro-dynamic voltage removal provided intra-MRI ECGs that varied by <3.8% from those outside the MRI, preserving the true S-wave to T-wave segment. In premature ventricular contraction (PVC) patients, clean ECGs separated premature ventricular contraction and sinus rhythm beats. Measured heating was <1.5°C. The system reliably acquired multiphase (steady-state free precession) wall-motion-cine and phase-contrast-cine scans, including subjects in whom 4-lead gating failed. The system required a minimum repetition time of 4 ms to allow robust ECG processing. CONCLUSION: High-fidelity intra-MRI 12-lead ECG is possible.


Assuntos
Fibrilação Atrial/cirurgia , Técnicas de Imagem de Sincronização Cardíaca/instrumentação , Eletrocardiografia/instrumentação , Imagem por Ressonância Magnética Intervencionista/instrumentação , Cirurgia Assistida por Computador/instrumentação , Idoso , Animais , Fibrilação Atrial/diagnóstico , Procedimentos Cirúrgicos Cardiovasculares/instrumentação , Eletrodos , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA