Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 41(6): 1073-1090.e12, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236195

RESUMO

Chronic activation of inflammatory pathways and suppressed interferon are hallmarks of immunosuppressive tumors. Previous studies have shown that CD11b integrin agonists could enhance anti-tumor immunity through myeloid reprograming, but the underlying mechanisms remain unclear. Herein we find that CD11b agonists alter tumor-associated macrophage (TAM) phenotypes by repressing NF-κB signaling and activating interferon gene expression simultaneously. Repression of NF-κB signaling involves degradation of p65 protein and is context independent. In contrast, CD11b agonism induces STING/STAT1 pathway-mediated interferon gene expression through FAK-mediated mitochondrial dysfunction, with the magnitude of induction dependent on the tumor microenvironment and amplified by cytotoxic therapies. Using tissues from phase I clinical studies, we demonstrate that GB1275 treatment activates STING and STAT1 signaling in TAMs in human tumors. These findings suggest potential mechanism-based therapeutic strategies for CD11b agonists and identify patient populations more likely to benefit.


Assuntos
Antígeno CD11b , Neoplasias , Humanos , Antígeno CD11b/agonistas , Imunoterapia , Interferons , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , NF-kappa B/metabolismo , Transdução de Sinais , Macrófagos Associados a Tumor/imunologia
2.
Mol Ther Oncolytics ; 23: 547-559, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34938855

RESUMO

Although anti-tumor activities of type I interferons (IFNs) have been recognized for decades, the molecular mechanisms contributing to clinical response remain poorly understood. The complex functions of these pleiotropic cytokines include stimulation of innate and adaptive immune responses against tumors as well as direct inhibition of tumor cells. In high-grade, Bacillus Calmette-Guérin (BCG)-unresponsive non-muscle-invasive bladder cancer, nadofaragene firadenovec, a non-replicating adenovirus administered locally to express the IFNα2b transgene, embodies a novel approach to deploy the therapeutic activity of type I IFNs while minimizing systemic toxicities. Deciphering which functions of type I IFN are required for clinical activity will bolster efforts to maximize the efficacy of nadofaragene firadenovec and other type I IFN-based therapies, and inform strategies to address resistance. As such, we characterized the phenotypic and molecular response of human bladder cancer cell lines to IFNα delivered in multiple contexts, including adenoviral delivery. We found that constitutive activation of the type I IFN signaling pathway is a biomarker for resistance to both transcriptional response and direct cytotoxic effects of IFNα. We present several genes that discriminate between sensitive and resistant tumor cells, suggesting they should be explored for utility as biomarkers in future clinical trials of type I IFN-based anti-tumor therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA