Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancers (Basel) ; 14(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35267575

RESUMO

The current risk stratification in prostate cancer (PCa) is frequently insufficient to adequately predict disease development and outcome. One hallmark of cancer is telomere maintenance. For telomere maintenance, PCa cells exclusively employ telomerase, making it essential for this cancer entity. However, TERT, the catalytic protein component of the reverse transcriptase telomerase, itself does not suit as a prognostic marker for prostate cancer as it is rather low expressed. We investigated if, instead of TERT, transcription factors regulating TERT may suit as prognostic markers. To identify transcription factors regulating TERT, we developed and applied a new gene regulatory modeling strategy to a comprehensive transcriptome dataset of 445 primary PCa. Six transcription factors were predicted as TERT regulators, and most prominently, the developmental morphogenic factor PITX1. PITX1 expression positively correlated with telomere staining intensity in PCa tumor samples. Functional assays and chromatin immune-precipitation showed that PITX1 activates TERT expression in PCa cells. Clinically, we observed that PITX1 is an excellent prognostic marker, as concluded from an analysis of more than 15,000 PCa samples. PITX1 expression in tumor samples associated with (i) increased Ki67 expression indicating increased tumor growth, (ii) a worse prognosis, and (iii) correlated with telomere length.

2.
Infection ; 50(2): 359-370, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34279815

RESUMO

PURPOSE: While more advanced COVID-19 necessitates medical interventions and hospitalization, patients with mild COVID-19 do not require this. Identifying patients at risk of progressing to advanced COVID-19 might guide treatment decisions, particularly for better prioritizing patients in need for hospitalization. METHODS: We developed a machine learning-based predictor for deriving a clinical score identifying patients with asymptomatic/mild COVID-19 at risk of progressing to advanced COVID-19. Clinical data from SARS-CoV-2 positive patients from the multicenter Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS) were used for discovery (2020-03-16 to 2020-07-14) and validation (data from 2020-07-15 to 2021-02-16). RESULTS: The LEOSS dataset contains 473 baseline patient parameters measured at the first patient contact. After training the predictor model on a training dataset comprising 1233 patients, 20 of the 473 parameters were selected for the predictor model. From the predictor model, we delineated a composite predictive score (SACOV-19, Score for the prediction of an Advanced stage of COVID-19) with eleven variables. In the validation cohort (n = 2264 patients), we observed good prediction performance with an area under the curve (AUC) of 0.73 ± 0.01. Besides temperature, age, body mass index and smoking habit, variables indicating pulmonary involvement (respiration rate, oxygen saturation, dyspnea), inflammation (CRP, LDH, lymphocyte counts), and acute kidney injury at diagnosis were identified. For better interpretability, the predictor was translated into a web interface. CONCLUSION: We present a machine learning-based predictor model and a clinical score for identifying patients at risk of developing advanced COVID-19.


Assuntos
COVID-19 , Escore de Alerta Precoce , Área Sob a Curva , COVID-19/diagnóstico , Humanos , Aprendizado de Máquina , Estudos Retrospectivos , SARS-CoV-2
3.
PLoS Comput Biol ; 16(2): e1007657, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32097424

RESUMO

Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.


Assuntos
Redes Reguladoras de Genes , Ativação de Macrófagos , Macrófagos/metabolismo , Microambiente Tumoral , Anaerobiose , Animais , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Inosina Monofosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
4.
Mol Oncol ; 14(1): 129-138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736271

RESUMO

The chromatin-organizing factor CCCTC-binding factor (CTCF) is involved in transcriptional regulation, DNA-loop formation, and telomere maintenance. To evaluate the clinical impact of CTCF in prostate cancer, we analyzed CTCF expression by immunohistochemistry on a tissue microarray containing 17 747 prostate cancers. Normal prostate tissue showed negative to low CTCF expression, while in prostate cancers, CTCF expression was seen in 7726 of our 12 555 (61.5%) tumors and was considered low in 44.6% and high in 17% of cancers. Particularly, high CTCF expression was significantly associated with the presence of the transmembrane protease, serine 2:ETS-related gene fusion: Only 10% of ERG-negative cancers, but 30% of ERG-positive cancers had high-level CTCF expression (P < 0.0001). CTCF expression was significantly associated with advanced pathological tumor stage, high Gleason grade (P < 0.0001 each), nodal metastasis (P = 0.0122), and early biochemical recurrence (P < 0.0001). Multivariable modeling revealed that the prognostic impact of CTCF was independent from established presurgical parameters such as clinical stage and Gleason grade of the biopsy. Comparison with key molecular alterations showed strong associations with the expression of the Ki-67 proliferation marker and presence of phosphatase and tensin homolog deletions (P < 0.0001 each). The results of our study identify CTCF expression as a candidate biomarker for prognosis assessment in prostate cancer.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/metabolismo , Serina Endopeptidases/genética , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fator de Ligação a CCCTC/genética , Proliferação de Células/genética , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Deleção de Sequência , Serina Endopeptidases/metabolismo , Análise Serial de Tecidos , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
5.
Prostate ; 79(3): 302-311, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30430607

RESUMO

BACKGROUND: The transcription factor CCAAT-enhancer-binding protein alpha (CEBPA) is a crucial regulator of cell proliferation and differentiation. Expression levels of CEBPA have been suggested to be prognostic in various tumor types. METHODS: Here, we analyzed the immunohistochemical expression of CEBPA in a tissue microarray containing more than 17 000 prostate cancer specimens with annotated clinical and molecular data including for example TMPRSS2:ERG fusion and PTEN deletion status. RESULTS: Normal prostate glands showed moderate to strong CEBPA staining, while CEBPA expression was frequently reduced (40%) or lost (30%) in prostate cancers. Absence of detectable CEBPA expression was markedly more frequent in ERG negative (45%) as compared to ERG positive cancers (20%, P < 0.0001). Reduced CEBPA expression was linked to unfavorable phenotype (P < 0.0001) and poor prognosis (P = 0.0008). Subgroup analyses revealed, that the prognostic value of CEBPA loss was entirely driven by tumors carrying both TMPRSS2:ERG fusions and PTEN deletions. In this subgroup, CEBPA loss was tightly linked to advanced tumor stage (P < 0.0001), high Gleason grade (P < 0.0001), positive nodal stage (0.0003), and early biochemical recurrence (P = 0.0007), while these associations were absent or markedly diminished in tumors with normal PTEN copy numbers and/or absence of ERG fusion. CONCLUSIONS: CEBPA is down regulated in about one third of prostate cancers, but the clinical impact of CEBPA loss is strictly limited to the subset of about 10% prostate cancers carrying both ERG fusion and deletions of the PTEN tumor suppressor. Our findings challenge the concept that prognostic molecular markers may be generally applicable to all prostate cancers.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/deficiência , Proteínas de Fusão Oncogênica/metabolismo , PTEN Fosfo-Hidrolase/deficiência , Neoplasias da Próstata/metabolismo , Idoso , Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dosagem de Genes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Análise Serial de Tecidos
6.
BMC Bioinformatics ; 20(1): 737, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888467

RESUMO

BACKGROUND: Reactivation of the telomerase reverse transcriptase gene TERT is a central feature for unlimited proliferation of the majority of cancers. However, the underlying regulatory processes are only partly understood. RESULTS: We assembled regulator binding information from serveral sources to construct a generic human and mouse gene regulatory network. Advancing our "Mixed Integer linear Programming based Regulatory Interaction Predictor" (MIPRIP) approach, we identified the most common and cancer-type specific regulators of TERT across 19 different human cancers. The results were validated by using the well-known TERT regulation by the ETS1 transcription factor in a subset of melanomas with mutations in the TERT promoter. Our improved MIPRIP2 R-package and the associated generic regulatory networks are freely available at https://github.com/KoenigLabNM/MIPRIP. CONCLUSION: MIPRIP 2.0 identified common as well as tumor type specific regulators of TERT. The software can be easily applied to transcriptome datasets to predict gene regulation for any gene and disease/condition under investigation.


Assuntos
Redes Reguladoras de Genes , Neoplasias/genética , Telomerase/genética , Interface Usuário-Computador , Animais , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Mutação , Neoplasias/patologia , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/metabolismo , Telomerase/metabolismo
7.
Oncotarget ; 9(85): 35559-35580, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30473751

RESUMO

Colorectal cancer remains a leading cause of cancer-related death worldwide. A previous transcriptomics based study characterized molecular subgroups of which the stromal subgroup was associated with the worst clinical outcome. Micro-RNAs (miRNAs) are well-known regulators of gene expression and can follow a non-linear repression mechanism. We set up a model combining piecewise linear and linear regression and applied this combined regression model to a comprehensive colon adenocarcinoma dataset. We identified miRNAs involved in regulating characteristic gene sets, particularly extracellular matrix remodeling in the stromal subgroup. Comparison of expression data from separated (epithelial) cancer cells and stroma cells or fibroblasts associate these regulatory interactions with infiltrating stromal or tumor-associated fibroblasts. MiR-200c, miR-17 and miR-192 were identified as the most promising candidates regulating genes crucial for extracellular matrix remodeling. We validated our computational findings by in vitro assays. Enforced expression of either miR-200c, miR-17 or miR-192 in untransformed human colon fibroblasts down-regulated 85% of all predicted target genes. Expressing these miRNAs singly or in combination in human colon fibroblasts co-cultured with colon cancer cells considerably reduced cancer cell invasion validating these miRNAs as cancer cell infiltration suppressors in tumor associated fibroblasts.

8.
BMC Med Genomics ; 9: 10, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26927636

RESUMO

BACKGROUND: Melanoma is a cancer with rising incidence and new therapeutics are needed. For this, it is necessary to understand the molecular mechanisms of melanoma development and progression. Melanoma differs from other cancers by its ability to produce the pigment melanin via melanogenesis; this biosynthesis is essentially regulated by microphthalmia-associated transcription factor (MITF). MITF regulates various processes such as cell cycling and differentiation. MITF shows an ambivalent role, since high levels inhibit cell proliferation and low levels promote invasion. Hence, well-balanced MITF homeostasis is important for the progression and spread of melanoma. Therefore, it is difficult to use MITF itself for targeted therapy, but elucidating its complex regulation may lead to a promising melanoma-cell specific therapy. METHOD: We systematically analyzed the regulation of MITF with a novel established transcription factor based gene regulatory network model. Starting from comparative transcriptomics analysis using data from cells originating from nine different tumors and a melanoma cell dataset, we predicted the transcriptional regulators of MITF employing ChIP binding information from a comprehensive set of databases. The most striking regulators were experimentally validated by functional assays and an MITF-promoter reporter assay. Finally, we analyzed the impact of the expression of the identified regulators on clinically relevant parameters of melanoma, i.e. the thickness of primary tumors and patient overall survival. RESULTS: Our model predictions identified SOX10 and SOX5 as regulators of MITF. We experimentally confirmed the role of the already well-known regulator SOX10. Additionally, we found that SOX5 knockdown led to MITF up-regulation in melanoma cells, while double knockdown with SOX10 showed a rescue effect; both effects were validated by reporter assays. Regarding clinical samples, SOX5 expression was distinctively up-regulated in metastatic compared to primary melanoma. In contrast, survival analysis of melanoma patients with predominantly metastatic disease revealed that low SOX5 levels were associated with a poor prognosis. CONCLUSION: MITF regulation by SOX5 has been shown only in murine cells, but not yet in human melanoma cells. SOX5 has a strong inhibitory effect on MITF expression and seems to have a decisive clinical impact on melanoma during tumor progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fatores de Transcrição SOXD/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Simulação por Computador , Fluorescência , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fator de Transcrição Associado à Microftalmia/metabolismo , Invasividade Neoplásica , Fenótipo , Programação Linear , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição SOXE/metabolismo , Análise de Sobrevida , Transfecção
9.
Nucleic Acids Res ; 44(10): e93, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26908654

RESUMO

Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments.


Assuntos
Regulação Fúngica da Expressão Gênica , Aprendizado de Máquina , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Redes Reguladoras de Genes , Histonas/genética , Histonas/metabolismo , Complexo Mediador/genética , Mutação , Proteínas Nucleares/genética , Programação Linear , Proteínas Repressoras/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Software
10.
Bioinformatics ; 30(17): i401-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25161226

RESUMO

MOTIVATION: Understanding regulation of transcription is central for elucidating cellular regulation. Several statistical and mechanistic models have come up the last couple of years explaining gene transcription levels using information of potential transcriptional regulators as transcription factors (TFs) and information from epigenetic modifications. The activity of TFs is often inferred by their transcription levels, promoter binding and epigenetic effects. However, in principle, these methods do not take hard-to-measure influences such as post-transcriptional modifications into account. RESULTS: For TFs, we present a novel concept circumventing this problem. We estimate the regulatory activity of TFs using their cumulative effects on their target genes. We established our model using expression data of 59 cell lines from the National Cancer Institute. The trained model was applied to an independent expression dataset of melanoma cells yielding excellent expression predictions and elucidated regulation of melanogenesis. AVAILABILITY AND IMPLEMENTATION: Using mixed-integer linear programming, we implemented a switch-like optimization enabling a constrained but optimal selection of TFs and optimal model selection estimating their effects. The method is generic and can also be applied to further regulators of transcription. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Humanos , Melanócitos/metabolismo , Regiões Promotoras Genéticas
11.
BMC Syst Biol ; 8: 56, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24886210

RESUMO

BACKGROUND: Common approaches to pathway analysis treat pathways merely as lists of genes disregarding their topological structures, that is, ignoring the genes' interactions on which a pathway's cellular function depends. In contrast, PathWave has been developed for the analysis of high-throughput gene expression data that explicitly takes the topology of networks into account to identify both global dysregulation of and localized (switch-like) regulatory shifts within metabolic and signaling pathways. For this purpose, it applies adjusted wavelet transforms on optimized 2D grid representations of curated pathway maps. RESULTS: Here, we present the new version of PathWave with several substantial improvements including a new method for optimally mapping pathway networks unto compact 2D lattice grids, a more flexible and user-friendly interface, and pre-arranged 2D grid representations. These pathway representations are assembled for several species now comprising H. sapiens, M. musculus, D. melanogaster, D. rerio, C. elegans, and E. coli. We show that PathWave is more sensitive than common approaches and apply it to RNA-seq expression data, identifying crucial metabolic pathways in lung adenocarcinoma, as well as microarray expression data, identifying pathways involved in longevity of Drosophila. CONCLUSIONS: PathWave is a generic method for pathway analysis complementing established tools like GSEA, and the update comprises efficient new features. In contrast to the tested commonly applied approaches which do not take network topology into account, PathWave enables identifying pathways that are either known be involved in or very likely associated with such diverse conditions as human lung cancer or aging of D. melanogaster. The PathWave R package is freely available at http://www.ichip.de/software/pathwave.html.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Transdução de Sinais/genética , Software , Envelhecimento/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Longevidade/genética , Neoplasias Pulmonares/metabolismo , Interface Usuário-Computador
12.
Biochim Biophys Acta ; 1844(5): 950-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24361481

RESUMO

The reverse phase protein array (RPPA) approach was employed for a quantitative analysis of 71 cancer-relevant proteins and phosphoproteins in 84 non-small cell lung cancer (NSCLC) cell lines and by monitoring the activation state of selected receptor tyrosine kinases, PI3K/AKT and MEK/ERK1/2 signaling, cell cycle control, apoptosis, and DNA damage. Additional information on NSCLC cell lines such as that of transcriptomic data, genomic aberrations, and drug sensitivity was analyzed in the context of proteomic data using supervised and non-supervised approaches for data analysis. First, the unsupervised analysis of proteomic data indicated that proteins clustering closely together reflect well-known signaling modules, e.g. PI3K/AKT- and RAS/RAF/ERK-signaling, cell cycle regulation, and apoptosis. However, mutations of EGFR, ERBB2, RAF, RAS, TP53, and PI3K were found dispersed across different signaling pathway clusters. Merely cell lines with an amplification of EGFR and/or ERBB2 clustered closely together on the proteomic, but not on the transcriptomic level. Secondly, supervised data analysis revealed that sensitivity towards anti-EGFR drugs generally correlated better with high level EGFR phosphorylation than with EGFR abundance itself. High level phosphorylation of RB and high abundance of AURKA were identified as candidates that can potentially predict sensitivity towards the aurora kinase inhibitor VX680. Examples shown demonstrate that the RPPA approach presents a useful platform for targeted proteomics with high potential for biomarker discovery. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Neoplasias/metabolismo , Análise Serial de Proteínas/métodos , Proteômica/métodos , Transdução de Sinais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genômica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação/genética , Fosforilação/efeitos dos fármacos , Células Tumorais Cultivadas
13.
BMC Med Genomics ; 3: 39, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20831783

RESUMO

BACKGROUND: Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer. METHODS: For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors. RESULTS: Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway. CONCLUSION: We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Neoplasias da Mama/genética , Estrogênios/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Esteroides/biossíntese , Regulação para Cima
14.
Bioinformatics ; 26(9): 1225-31, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20335275

RESUMO

MOTIVATION: Gene expression profiling by microarrays or transcript sequencing enables observing the pathogenic function of tumors on a mesoscopic level. RESULTS: We investigated neuroblastoma tumors that clinically exhibit a very heterogeneous course ranging from rapid growth with fatal outcome to spontaneous regression and detected regulatory oncogenetic shifts in their metabolic networks. In contrast to common enrichment tests, we took network topology into account by applying adjusted wavelet transforms on an elaborated and new 2D grid representation of curated pathway maps from the Kyoto Enzyclopedia of Genes and Genomes. The aggressive form of the tumors showed regulatory shifts for purine and pyrimidine biosynthesis as well as folate-mediated metabolism of the one-carbon pool in respect to increased nucleotide production. We spotted an oncogentic regulatory switch in glutamate metabolism for which we provided experimental validation, being the first steps towards new possible drug therapy. The pattern recognition method we used complements normal enrichment tests to detect such functionally related regulation patterns. AVAILABILITY AND IMPLEMENTATION: PathWave is implemented in a package for R (www.r-project.org) version 2.6.0 or higher. It is freely available from http://www.ichip.de/software/pathwave.html.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Algoritmos , Linhagem Celular Tumoral , Simulação por Computador , Perfilação da Expressão Gênica , Genoma , Ácido Glutâmico/metabolismo , Humanos , Redes e Vias Metabólicas , Modelos Genéticos , Neuroblastoma/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Software
15.
Infect Genet Evol ; 9(3): 351-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18313365

RESUMO

Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Biomedical research could enable treating the disease by effectively and specifically targeting essential enzymes of this parasite. However, the parasite has developed resistance to existing drugs making it indispensable to discover new drugs. We have established a simple computational tool which analyses the topology of the metabolic network of P. falciparum to identify essential enzymes as possible drug targets. We investigated the essentiality of a reaction in the metabolic network by deleting (knocking-out) such a reaction in silico. The algorithm selected neighbouring compounds of the investigated reaction that had to be produced by alternative biochemical pathways. Using breadth first searches, we tested qualitatively if these products could be generated by reactions that serve as potential deviations of the metabolic flux. With this we identified 70 essential reactions. Our results were compared with a comprehensive list of 38 targets of approved malaria drugs. When combining our approach with an in silico analysis performed recently [Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., 2004. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917-924] we could improve the precision of the prediction results. Finally we present a refined list of 22 new potential candidate targets for P. falciparum, half of which have reasonable evidence to be valid targets against micro-organisms and cancer.


Assuntos
Descoberta de Drogas/métodos , Processamento Eletrônico de Dados , Malária Falciparum/parasitologia , Redes e Vias Metabólicas , Plasmodium falciparum/metabolismo , Algoritmos , Animais , Humanos , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Sensibilidade e Especificidade , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA