Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0222223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411080

RESUMO

During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE: HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Infecções por HIV , HIV , Fator 2 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Latência Viral , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linfócitos T CD4-Positivos , Sistemas CRISPR-Cas , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Replicação Viral , HIV/fisiologia
2.
mBio ; : e0131823, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938000

RESUMO

Hepatitis C virus (HCV) is the leading cause of death from liver disease. How HCV infection causes lasting liver damage and increases cancer risk remains unclear. Here, we identify bipotent liver stem cells as novel targets for HCV infection, and their erroneous differentiation as the potential cause of impaired liver regeneration and cancer development. We show 3D organoids generated from liver stem cells from actively HCV-infected individuals carry replicating virus and maintain low-grade infection over months. Organoids can be infected with a primary HCV isolate. Virus-inclusive single-cell RNA sequencing uncovered transcriptional reprogramming in HCV+ cells supporting hepatocytic differentiation, cancer stem cell development, and viral replication while stem cell proliferation and interferon signaling are disrupted. Our data add a new pathogenesis mechanism-infection of liver stem cells-to the biology of HCV infection that may explain progressive liver damage and enhanced cancer risk through an altered stem cell state.ImportanceThe hepatitis C virus (HCV) causes liver disease, affecting millions. Even though we have effective antivirals that cure HCV, they cannot stop terminal liver disease. We used an adult stem cell-derived liver organoid system to understand how HCV infection leads to the progression of terminal liver disease. Here, we show that HCV maintains low-grade infections in liver organoids for the first time. HCV infection in liver organoids leads to transcriptional reprogramming causing cancer cell development and altered immune response. Our finding shows how HCV infection in liver organoids mimics HCV infection and patient pathogenesis. These results reveal that HCV infection in liver organoids contributes to liver disease progression.

3.
RSC Adv ; 13(26): 17667-17677, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37312993

RESUMO

The papain-like protease (PLpro) plays a critical role in SARS-CoV-2 (SCoV-2) pathogenesis and is essential for viral replication and for allowing the virus to evade the host immune response. Inhibitors of PLpro have great therapeutic potential, however, developing them has been challenging due to PLpro's restricted substrate binding pocket. In this report, we screened a 115 000-compound library for PLpro inhibitors and identified a new pharmacophore, based on a mercapto-pyrimidine fragment that is a reversible covalent inhibitor (RCI) of PLpro and inhibits viral replication in cells. Compound 5 had an IC50 of 5.1 µM for PLpro inhibition and hit optimization yielded a derivative with increased potency (IC50 0.85 µM, 6-fold higher). Activity based profiling of compound 5 demonstrated that it reacts with PLpro cysteines. We show here that compound 5 represents a new class of RCIs, which undergo an addition elimination reaction with cysteines in their target proteins. We further show that their reversibility is catalyzed by exogenous thiols and is dependent on the size of the incoming thiol. In contrast, traditional RCIs are all based upon the Michael addition reaction mechanism and their reversibility is base-catalyzed. We identify a new class of RCIs that introduces a more reactive warhead with a pronounced selectivity profile based on thiol ligand size. This could allow the expansion of RCI modality use towards a larger group of proteins important for human disease.

4.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294077

RESUMO

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Assuntos
COVID-19 , Metiltransferases , Humanos , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , RNA Viral/genética , Exorribonucleases
5.
RSC Adv ; 13(16): 10636-10641, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37025664

RESUMO

Covalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-2 have great potential as antivirals, but their non-specific reactivity with thiols has limited their development. In this report, we performed an 8000 molecule electrophile screen against PLpro and identified an α-chloro amide fragment, termed compound 1, which inhibited SARS-CoV-2 replication in cells, and also had low non-specific reactivity with thiols. Compound 1 covalently reacts with the active site cysteine of PLpro, and had an IC50 of 18 µM for PLpro inhibition. Compound 1 also had low non-specific reactivity with thiols and reacted with glutathione 1-2 orders of magnitude slower than other commonly used electrophilic warheads. Finally, compound 1 had low toxicity in cells and mice and has a molecular weight of only 247 daltons and consequently has great potential for further optimization. Collectively, these results demonstrate that compound 1 is a promising lead fragment for future PLpro drug discovery campaigns.

6.
Viruses ; 14(10)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298829

RESUMO

Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.


Assuntos
Histonas , Fatores de Transcrição , Domínios Proteicos , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Regulação da Expressão Gênica , Proliferação de Células , Proteínas de Ciclo Celular/metabolismo
7.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912856

RESUMO

Hepatitis C virus (HCV) infection remains a worldwide public health issue despite direct-acting antivirals. A substantial proportion of infected individuals (15%-45%) spontaneously clear repeated HCV infections with genetically different viruses by generating broadly neutralizing antibodies (bNAbs). However, translating this response into an effective vaccine strategy has been unsuccessful. In this issue of the JCI, Frumento and colleagues report on their study of bNAb evolution longitudinally in convalescent individuals with repeated infections. Using pseudotyped viruses, well-characterized monoclonal antibodies, and complex modeling, the authors show that multiple exposures to antigenically related, antibody-sensitive viral envelope proteins induced potent bNAbs. This work provides valuable insight into the best strategies for developing HCV vaccines in the future that may successfully reproduce the immunity induced during natural exposures.


Assuntos
Hepatite C Crônica , Hepatite C , Vacinas , Vacinas contra Hepatite Viral , Anticorpos Neutralizantes , Antivirais , Anticorpos Amplamente Neutralizantes , Convalescença , Sinais (Psicologia) , Hepacivirus , Anticorpos Anti-Hepatite C , Humanos , Vacinas/metabolismo , Proteínas do Envelope Viral
8.
Open Biol ; 12(3): 210320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35232252

RESUMO

Hepatitis C virus (HCV) remains a global public health challenge with an estimated 71 million people chronically infected, with surges in new cases and no effective vaccine. New methods are needed to study the human immune response to HCV since in vivo animal models are limited and in vitro cancer cell models often show dysregulated immune and proliferative responses. Here, we developed a CD8+ T cell and adult stem cell liver organoid system using a microfluidic chip to coculture 3D human liver organoids embedded in extracellular matrix with HLA-matched primary human T cells in suspension. We then employed automated phase contrast and immunofluorescence imaging to monitor T cell invasion and morphological changes in the liver organoids. This microfluidic coculture system supports targeted killing of liver organoids when pulsed with a peptide specific for HCV non-structural protein 3 (NS3) (KLVALGINAV) in the presence of patient-derived CD8+ T cells specific for KLVALGINAV. This demonstrates the novel potential of the coculture system to molecularly study adaptive immune responses to HCV in an in vitro setting using primary human cells.


Assuntos
Linfócitos T CD8-Positivos , Hepatite C , Organoides , Linfócitos T CD8-Positivos/imunologia , Técnicas de Cocultura , Hepacivirus , Hepatite C/imunologia , Humanos , Microfluídica , Proteínas não Estruturais Virais/imunologia
9.
Cell ; 184(25): 6022-6036.e18, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34838159

RESUMO

Viral-deletion mutants that conditionally replicate and inhibit the wild-type virus (i.e., defective interfering particles, DIPs) have long been proposed as single-administration interventions with high genetic barriers to resistance. However, theories predict that robust, therapeutic DIPs (i.e., therapeutic interfering particles, TIPs) must conditionally spread between cells with R0 >1. Here, we report engineering of TIPs that conditionally replicate with SARS-CoV-2, exhibit R0 >1, and inhibit viral replication 10- to 100-fold. Inhibition occurs via competition for viral replication machinery, and a single administration of TIP RNA inhibits SARS-CoV-2 sustainably in continuous cultures. Strikingly, TIPs maintain efficacy against neutralization-resistant variants (e.g., B.1.351). In hamsters, both prophylactic and therapeutic intranasal administration of lipid-nanoparticle TIPs durably suppressed SARS-CoV-2 by 100-fold in the lungs, reduced pro-inflammatory cytokine expression, and prevented severe pulmonary edema. These data provide proof of concept for a class of single-administration antivirals that may circumvent current requirements to continually update medical countermeasures against new variants.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus Defeituosos Interferentes/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , COVID-19/metabolismo , Linhagem Celular , Chlorocebus aethiops , Meios de Cultivo Condicionados/farmacologia , Vírus Defeituosos Interferentes/patogenicidade , Sistemas de Liberação de Medicamentos/métodos , Células Epiteliais , Humanos , Masculino , Mesocricetus , Nanopartículas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Vero
10.
Cell Rep ; 34(11): 108859, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730579

RESUMO

Hepatitis A virus (HAV) is a positive-sense RNA virus causing acute inflammation of the liver. Here, using a genome-scale CRISPR screen, we provide a comprehensive picture of the cellular factors that are exploited by HAV. We identify genes involved in sialic acid/ganglioside biosynthesis and members of the eukaryotic translation initiation factor complex, corroborating their putative roles for HAV. Additionally, we uncover all components of the cellular machinery for UFMylation, a ubiquitin-like protein modification. We show that HAV translation specifically depends on UFM1 conjugation of the ribosomal protein RPL26. Furthermore, we find that components related to the yeast Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex are required for viral translation independent of controlling viral poly(A) tails or RNA stability. Finally, we demonstrate that pharmacological inhibition of the TRAMP-like complex decreases HAV replication in hepatocyte cells and human liver organoids, thus providing a strategy for host-directed therapy of HAV infection.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Humano , Vírus da Hepatite A/fisiologia , Hepatite/virologia , Interações Hospedeiro-Patógeno , Complexos Multiproteicos/metabolismo , Proteínas/metabolismo , Ubiquitinação , Antivirais/metabolismo , Catálise , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Hepatite/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/virologia , Poliadenilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Viral/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
11.
Nat Metab ; 2(11): 1265-1283, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199924

RESUMO

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.


Assuntos
ADP-Ribosil Ciclase 1/genética , Envelhecimento/metabolismo , Senescência Celular , Ativação de Macrófagos , Glicoproteínas de Membrana/genética , NAD/metabolismo , ADP-Ribosil Ciclase/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Antígenos CD/metabolismo , Citocinas/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Glicólise/genética , Humanos , Fígado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , NAD+ Nucleosidase/metabolismo
12.
Nat Microbiol ; 5(9): 1144-1157, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32541947

RESUMO

Quiescence is a hallmark of CD4+ T cells latently infected with human immunodeficiency virus 1 (HIV-1). While reversing this quiescence is an effective approach to reactivate latent HIV from T cells in culture, it can cause deleterious cytokine dysregulation in patients. As a key regulator of T-cell quiescence, FOXO1 promotes latency and suppresses productive HIV infection. We report that, in resting T cells, FOXO1 inhibition impaired autophagy and induced endoplasmic reticulum (ER) stress, thereby activating two associated transcription factors: activating transcription factor 4 (ATF4) and nuclear factor of activated T cells (NFAT). Both factors associate with HIV chromatin and are necessary for HIV reactivation. Indeed, inhibition of protein kinase R-like ER kinase, an ER stress sensor that can mediate the induction of ATF4, and calcineurin, a calcium-dependent regulator of NFAT, synergistically suppressed HIV reactivation induced by FOXO1 inhibition. Thus, our studies uncover a link of FOXO1, ER stress and HIV infection that could be therapeutically exploited to selectively reverse T-cell quiescence and reduce the size of the latent viral reservoir.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , HIV-1/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Fator 4 Ativador da Transcrição/metabolismo , Linfócitos T CD4-Positivos/virologia , Proteína Forkhead Box O1/genética , Técnicas de Silenciamento de Genes , Infecções por HIV/virologia , Humanos , Células K562
13.
Methods Mol Biol ; 1983: 3-16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31087289

RESUMO

The dynamic nature of protein posttranslational modification (PTM) allows cells to rapidly respond to changes in their environment, such as nutrition, stress, or signaling. Lysine residues are targets for several types of modifications, including methylation, ubiquitination, and various acylation groups, especially acetylation. Currently, one of the best methods for identification and quantification of protein acetylation is immunoaffinity enrichment in combination with high-resolution mass spectrometry. As we are using a relatively novel and comprehensive mass spectrometric approach, data-independent acquisition (DIA), this protocol provides high-throughput, accurate, and reproducible label-free PTM quantification. Here we describe detailed protocols to process relatively small amounts of mouse liver tissue that integrate isolation of proteins, proteolytic digestion into peptides, immunoaffinity enrichment of acetylated peptides, identification of acetylation sites, and comprehensive quantification of relative abundance changes for thousands of identified lysine acetylation sites.


Assuntos
Cromatografia Líquida , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Acetilação , Animais , Fígado/metabolismo , Camundongos , Peptídeos , Proteólise , Proteoma , Proteômica , Fluxo de Trabalho
14.
Mol Cell ; 74(6): 1164-1174.e4, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31054975

RESUMO

Post-translational modifications of the RNA polymerase II C-terminal domain (CTD) coordinate the transcription cycle. Crosstalk between different modifications is poorly understood. Here, we show how acetylation of lysine residues at position 7 of characteristic heptad repeats (K7ac)-only found in higher eukaryotes-regulates phosphorylation of serines at position 5 (S5p), a conserved mark of polymerases initiating transcription. We identified the regulator of pre-mRNA-domain-containing (RPRD) proteins as reader proteins of K7ac. K7ac enhanced CTD peptide binding to the CTD-interacting domain (CID) of RPRD1A and RPRD1B proteins in isothermal calorimetry and molecular modeling experiments. Deacetylase inhibitors increased K7ac- and decreased S5-phosphorylated polymerases, consistent with acetylation-dependent S5 dephosphorylation by an RPRD-associated S5 phosphatase. Consistent with this model, RPRD1B knockdown increased S5p but enhanced K7ac, indicating that RPRD proteins recruit K7 deacetylases, including HDAC1. We also report autoregulatory crosstalk between K7ac and S5p via RPRD proteins and their interactions with acetyl- and phospho-eraser proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
15.
Nature ; 564(7735): 193-194, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30531877
16.
J Exp Med ; 215(1): 51-62, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29191913

RESUMO

The expansion of CD8+CD28- T cells, a population of terminally differentiated memory T cells, is one of the most consistent immunological changes in humans during aging. CD8+CD28- T cells are highly cytotoxic, and their frequency is linked to many age-related diseases. As they do not accumulate in mice, many of the molecular mechanisms regulating their fate and function remain unclear. In this paper, we find that human CD8+CD28- T cells, under resting conditions, have an enhanced capacity to use glycolysis, a function linked to decreased expression of the NAD+-dependent protein deacetylase SIRT1. Global gene expression profiling identified the transcription factor FoxO1 as a SIRT1 target involved in transcriptional reprogramming of CD8+CD28- T cells. FoxO1 is proteasomally degraded in SIRT1-deficient CD8+CD28- T cells, and inhibiting its activity in resting CD8+CD28+ T cells enhanced glycolytic capacity and granzyme B production as in CD8+CD28- T cells. These data identify the evolutionarily conserved SIRT1-FoxO1 axis as a regulator of resting CD8+ memory T cell metabolism and activity in humans.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético/genética , Memória Imunológica , Sirtuína 1/deficiência , Biomarcadores , Antígenos CD28/metabolismo , Citotoxicidade Imunológica , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Humanos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Bio Protoc ; 7(10)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28835903

RESUMO

The main obstacle to eradicating HIV-1 from patients is post-integration latency (Finzi et al., 1999). Antiretroviral treatments target only actively replicating virus, while latent infections that have low or no transcriptional activity remain untreated (Sedaghat et al., 2007). A combination of antiretroviral treatments with latency-purging strategies may accelerate the depletion of latent reservoirs and lead to a cure (Geeraert et al., 2008). Current strategies to reactivate HIV-1 from latency include use of prostratin, a non-tumor-promoting phorbol ester (Williams et al., 2004), BET inhibitors (Filippakopoulos et al., 2010; Delmore et al., 2011), and histone deacetylase (HDAC) inhibitors, such as suberoylanilidehydroxamic acid (i.e., SAHA or Vorinostat) (Kelly et al., 2003; Archin et al., 2009; Contreras et al., 2009; Edelstein et al., 2009). As the mechanisms of HIV-1 latency are diverse, effective reactivation may require combinatorial strategies (Quivy et al., 2002). The following protocol describes a flow cytometry-based method to quantify transcriptional activation of the HIV-1 long terminal repeat (LTR) upon drug treatment. This protocol is optimized for studying latently HIV-1-infected Jurkat (J-Lat) cell lines that contain a GFP cassette. J-Lats that contain a different reporter, for example Luciferase, can be treated with drugs as described but have to be analyzed differently.

18.
Cell Host Microbe ; 21(5): 569-579.e6, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28494238

RESUMO

Transcriptional latency of HIV is a last barrier to viral eradication. Chromatin-remodeling complexes and post-translational histone modifications likely play key roles in HIV-1 reactivation, but the underlying mechanisms are incompletely understood. We performed an RNAi-based screen of human lysine methyltransferases and identified the SET and MYND domain-containing protein 2 (SMYD2) as an enzyme that regulates HIV-1 latency. Knockdown of SMYD2 or its pharmacological inhibition reactivated latent HIV-1 in T cell lines and in primary CD4+ T cells. SMYD2 associated with latent HIV-1 promoter chromatin, which was enriched in monomethylated lysine 20 at histone H4 (H4K20me1), a mark lost in cells lacking SMYD2. Further, we find that lethal 3 malignant brain tumor 1 (L3MBTL1), a reader protein with chromatin-compacting properties that recognizes H4K20me1, was recruited to the latent HIV-1 promoter in a SMYD2-dependent manner. We propose that a SMYD2-H4K20me1-L3MBTL1 axis contributes to HIV-1 latency and can be targeted with small-molecule SMYD2 inhibitors.


Assuntos
HIV-1/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Latência Viral/fisiologia , Linfócitos T CD4-Positivos , Linhagem Celular , Cromatina/química , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Recombinante , Feminino , Células HEK293 , HIV-1/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Humanos , Lisina/metabolismo , Metilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Proteínas Repressoras , Linfócitos T/virologia , Proteínas Supressoras de Tumor
19.
Cell Host Microbe ; 20(6): 702-704, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27978432

RESUMO

Integration is a key feature of the retroviral life cycle. This process involves packaging of the viral genome into chromatin, which is often assumed to occur as a post-integration step. In this issue of Cell Host & Microbe, Wang and colleagues (Wang et al., 2016) show that chromatinization occurs before integration, raising new questions about the role of histones in retroviral integration and transcription.


Assuntos
Retroviridae/crescimento & desenvolvimento , Retroviridae/genética , Montagem de Vírus , Integração Viral/genética , Acetilação , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/virologia , DNA Viral/genética , DNA Viral/fisiologia , Células-Tronco de Carcinoma Embrionário/virologia , Epigenômica , Fibroblastos , Regulação Viral da Expressão Gênica , Histonas/metabolismo , Histonas/fisiologia , Humanos , Infecções/metabolismo , Estágios do Ciclo de Vida , Camundongos , Células-Tronco Embrionárias Murinas/virologia , Proteínas do Nucleocapsídeo/metabolismo , Infecções por Retroviridae/terapia , Infecções por Retroviridae/virologia , Transcrição Gênica , Integração Viral/fisiologia
20.
Cell Host Microbe ; 20(6): 785-797, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27978436

RESUMO

A population of CD4 T lymphocytes harboring latent HIV genomes can persist in patients on antiretroviral therapy, posing a barrier to HIV eradication. To examine cellular complexes controlling HIV latency, we conducted a genome-wide screen with a pooled ultracomplex shRNA library and in vitro system modeling HIV latency and identified the mTOR complex as a modulator of HIV latency. Knockdown of mTOR complex subunits or pharmacological inhibition of mTOR activity suppresses reversal of latency in various HIV-1 latency models and HIV-infected patient cells. mTOR inhibitors suppress HIV transcription both through the viral transactivator Tat and via Tat-independent mechanisms. This inhibition occurs at least in part via blocking the phosphorylation of CDK9, a p-TEFb complex member that serves as a cofactor for Tat-mediated transcription. The control of HIV latency by mTOR signaling identifies a pathway that may have significant therapeutic opportunities.


Assuntos
Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Serina-Treonina Quinases TOR/farmacologia , Latência Viral/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quinase 9 Dependente de Ciclina/metabolismo , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Virais , HIV-1/fisiologia , Humanos , Células K562 , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos , Homólogo LST8 da Proteína Associada a mTOR , Produtos do Gene tat do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA