Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1367938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590439

RESUMO

The increasing prevalence of antimicrobial-resistant Staphylococcus aureus strains, especially methicillin-resistant S. aureus (MRSA), poses a threat to successful antibiotic treatment. Unsuccessful attempts to develop a vaccine and rising resistance to last-resort antibiotics urge the need for alternative treatments. Host-directed therapy (HDT) targeting critical intracellular stages of S. aureus emerges as a promising alternative, potentially acting synergistically with antibiotics and reducing the risk of de novo drug resistance. We assessed 201 ATP-competitive kinase inhibitors from Published Kinase Inhibitor Sets (PKIS1 and PKIS2) against intracellular MRSA. Seventeen hit compounds were identified, of which the two most effective and well-tolerated hit compounds (i.e., GW633459A and GW296115X) were selected for further analysis. The compounds did not affect planktonic bacterial cultures, while they were active in a range of human cell lines of cervical, skin, lung, breast and monocyte origin, confirming their host-directed mechanisms. GW633459A, structurally related to lapatinib, exhibited an HDT effect on intracellular MRSA independently of its known human epidermal growth factor receptor (EGFR)/(HER) kinase family targets. GW296115X activated adenosine monophosphate-activated protein kinase (AMPK), thereby enhancing bacterial degradation via autophagy. Finally, GW296115X not only reduced MRSA growth in human cells but also improved the survival rates of MRSA-infected zebrafish embryos, highlighting its potential as HDT.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Animais , Staphylococcus aureus , Peixe-Zebra , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
2.
Front Cell Infect Microbiol ; 13: 1253037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822359

RESUMO

Lung epithelial cells represent the first line of host defence against foreign inhaled components, including respiratory pathogens. Their responses to these exposures may direct subsequent immune activation to these pathogens. The epithelial response to mycobacterial infections is not well characterized and may provide clues to why some mycobacterial infections are cleared, while others are persistent and pathogenic. We have utilized an air-liquid interface model of human primary bronchial epithelial cells (ALI-PBEC) to investigate the epithelial response to infection with a variety of mycobacteria: Mycobacterium tuberculosis (Mtb), M. bovis (BCG), M. avium, and M. smegmatis. Airway epithelial cells were found to be infected by all four species, albeit at low frequencies. The proportion of infected epithelial cells was lowest for Mtb and highest for M. avium. Differential gene expression analysis revealed a common epithelial host response to mycobacteria, including upregulation of BIRC3, S100A8 and DEFB4, and downregulation of BPIFB1 at 48 h post infection. Apical secretions contained predominantly pro-inflammatory cytokines, while basal secretions contained tissue growth factors and chemokines. Finally, we show that neutrophils were attracted to both apical and basal secretions of infected ALI-PBEC. Neutrophils were attracted in high numbers to apical secretions from PBEC infected with all mycobacteria, with the exception of secretions from M. avium-infected ALI-PBEC. Taken together, our results show that airway epithelial cells are differentially infected by mycobacteria, and react rapidly by upregulation of antimicrobials, and increased secretion of inflammatory cytokines and chemokines which directly attract neutrophils. Thus, the airway epithelium may be an important immunological component in controlling and regulating mycobacterial infections.


Assuntos
Infecções por Mycobacterium , Mycobacterium tuberculosis , Humanos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Quimiocinas/metabolismo
3.
iScience ; 26(10): 107889, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37817935

RESUMO

This study characterized mechanisms of Bacille Calmette-Guérin (BCG) revaccination-induced trained immunity (TI) in India. Adults, BCG vaccinated at birth, were sampled longitudinally before and after a second BCG dose. BCG revaccination significantly elevated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 in HLA-DR+CD16-CD14hi monocytes, demonstrating induction of TI. Mycobacteria-specific CD4+ T cell interferon (IFN) γ, IL-2, and TNF-α were significantly higher in re-vaccinees and correlated positively with HLA-DR+CD16-CD14hi TI responses. This, however, did not translate into increased mycobacterial growth control, measured by mycobacterial growth inhibition assay (MGIA). Post revaccination, elevated secreted TNF-α, IL-1ß, and IL-6 to "heterologous" fungal, bacterial, and enhanced CXCL-10 and IFNα to viral stimuli were also observed concomitant with increased anti-inflammatory cytokine, IL-1RA. RNA sequencing after revaccination highlighted a BCG and LPS induced signature which included upregulated IL17 and TNF pathway genes and downregulated key inflammatory genes: CXCL11, CCL24, HLADRA, CTSS, CTSC. Our data highlight a balanced immune response comprising pro- and anti-inflammatory mediators to be a feature of BCG revaccination-induced immunity.

4.
Biotechnol Bioeng ; 120(8): 2314-2325, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37424521

RESUMO

Human macrophages are innate immune cells with diverse, functionally distinct phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 macrophages. Both are involved in multiple physiological and pathological processes, including would healing, infection, and cancer. However, the metabolic differences between these phenotypes are largely unexplored at single-cell resolution. To address this knowledge gap, an untargeted live single-cell mass spectrometry-based metabolomic profiling coupled with a machine-learning data analysis approach was developed to investigate the metabolic profile of each phenotype at the single-cell level. Results show that M1 and M2 macrophages have distinct metabolic profiles, with differential levels of fatty acyls, glycerophospholipids, and sterol lipids, which are important components of plasma membrane and involved in multiple biological processes. Furthermore, we could discern several putatively annotated molecules that contribute to inflammatory response of macrophages. The combination of random forest and live single-cell metabolomics provided an in-depth profile of the metabolome of primary human M1 and M2 macrophages at the single-cell level for the first time, which will pave the way for future studies targeting the differentiation of other immune cells.


Assuntos
Macrófagos , Algoritmo Florestas Aleatórias , Humanos , Macrófagos/metabolismo , Metabolômica , Metaboloma , Fenótipo
5.
NPJ Vaccines ; 8(1): 25, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823425

RESUMO

Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route. In this study, we have developed a trivalent chimpanzee adenoviral-vectored vaccine to provide protective immunity against pulmonary TB through targeting antigens linked to the three different growth phases (acute/chronic/dormancy) of Mycobacterium tuberculosis (M.tb) by expressing an acute replication-associated antigen, Ag85A, a chronically expressed virulence-associated antigen, TB10.4, and a dormancy/resuscitation-associated antigen, RpfB. Single-dose respiratory mucosal immunization with our trivalent vaccine induced robust, sustained tissue-resident multifunctional CD4+ and CD8+ T-cell responses within the lung tissues and airways, which were further quantitatively and qualitatively improved following boosting of subcutaneously BCG-primed hosts. Prophylactic and therapeutic immunization with this multivalent trivalent vaccine in conventional BALB/c mice provided significant protection against not only actively replicating M.tb bacilli but also dormant, non-replicating persisters. Importantly, when used as a booster, it also provided marked protection in the highly susceptible C3HeB/FeJ mice, and a single respiratory mucosal inoculation was capable of significant protection in a humanized mouse model. Our findings indicate the great potential of this next-generation TB vaccine strategy and support its further clinical development for both prophylactic and therapeutic applications.

6.
Immunology ; 168(3): 526-537, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217755

RESUMO

There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.


Assuntos
Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Ligação Proteica , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos , Receptores de Antígenos de Linfócitos T , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Antígenos HLA-E
7.
mBio ; 14(1): e0302422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475748

RESUMO

The global burden of tuberculosis (TB) is aggravated by the continuously increasing emergence of drug resistance, highlighting the need for innovative therapeutic options. The concept of host-directed therapy (HDT) as adjunctive to classical antibacterial therapy with antibiotics represents a novel and promising approach for treating TB. Here, we have focused on repurposing the clinically used anticancer drug tamoxifen, which was identified as a molecule with strong host-directed activity against intracellular Mycobacterium tuberculosis (Mtb). Using a primary human macrophage Mtb infection model, we demonstrate the potential of tamoxifen against drug-sensitive as well as drug-resistant Mtb bacteria. The therapeutic effect of tamoxifen was confirmed in an in vivo TB model based on Mycobacterium marinum infection of zebrafish larvae. Tamoxifen had no direct antimicrobial effects at the concentrations used, confirming that tamoxifen acted as an HDT drug. Furthermore, we demonstrate that the antimycobacterial effect of tamoxifen is independent of its well-known target the estrogen receptor (ER) pathway, but instead acts by modulating autophagy, in particular the lysosomal pathway. Through RNA sequencing and microscopic colocalization studies, we show that tamoxifen stimulates lysosomal activation and increases the localization of mycobacteria in lysosomes both in vitro and in vivo, while inhibition of lysosomal activity during tamoxifen treatment partly restores mycobacterial survival. Thus, our work highlights the HDT potential of tamoxifen and proposes it as a repurposed molecule for the treatment of TB. IMPORTANCE Tuberculosis (TB) is the world's most lethal infectious disease caused by a bacterial pathogen, Mycobacterium tuberculosis. This pathogen evades the immune defenses of its host and grows intracellularly in immune cells, particularly inside macrophages. There is an urgent need for novel therapeutic strategies because treatment of TB patients is increasingly complicated by rising antibiotic resistance. In this study, we explored a breast cancer drug, tamoxifen, as a potential anti-TB drug. We show that tamoxifen acts as a so-called host-directed therapeutic, which means that it does not act directly on the bacteria but helps the host macrophages combat the infection more effectively. We confirmed the antimycobacterial effect of tamoxifen in a zebrafish model for TB and showed that it functions by promoting the delivery of mycobacteria to digestive organelles, the lysosomes. These results support the high potential of tamoxifen to be repurposed to fight antibiotic-resistant TB infections by host-directed therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Peixe-Zebra , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Reposicionamento de Medicamentos , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética
8.
Front Immunol ; 13: 985938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268023

RESUMO

This proof-of-concept study tested if prior BCG revaccination can qualitatively and quantitively enhance antibody and T-cell responses induced by Oxford/AstraZeneca ChAdOx1nCoV-19 or COVISHIELD™, an efficacious and the most widely distributed vaccine in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth; latent tuberculosis negative and SARS-CoV-2 seronegative prior to COVISHIELD™ vaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher and persistent spike-specific neutralizing (n) Ab titers and polyfunctional CD4+ and CD8+ T-cells for eight months post COVISHIELD™ booster, including distinct CD4+IFN-γ+ and CD4+IFN-γ- effector memory (EM) subsets co-expressing IL-2, TNF-α and activation induced markers (AIM) CD154/CD137 as well as CD8+IFN-γ+ EM,TEMRA (T cell EM expressing RA) subset combinations co-expressing TNF-α and AIM CD137/CD69. Additionally, elevated nAb and T-cell responses to the Delta mutant in BCG-RV highlighted greater immune response breadth. Mechanistically, these BCG adjuvant effects were associated with elevated markers of trained immunity, including higher IL-1ß and TNF-α expression in CD14+HLA-DR+monocytes and changes in chromatin accessibility highlighting BCG-induced epigenetic changes. This study provides first in-depth analysis of both antibody and memory T-cell responses induced by COVISHIELD™ in SARS-CoV-2 seronegative young adults in India with strong evidence of a BCG-induced booster effect and therefore a rational basis to validate BCG, a low-cost and globally available vaccine, as an adjuvant to enhance heterologous adaptive immune responses to current and emerging COVID-19 vaccines.


Assuntos
Vacina BCG , Vacinas contra COVID-19 , COVID-19 , Humanos , Adulto Jovem , Adjuvantes Imunológicos , Cromatina , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunidade , Interleucina-2 , SARS-CoV-2 , Fator de Necrose Tumoral alfa , Vacinação
9.
J Immunol ; 209(8): 1555-1565, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096642

RESUMO

Tuberculosis (TB) remains one of the deadliest infectious diseases worldwide, posing great social and economic burden to affected countries. Novel vaccine approaches are needed to increase protective immunity against the causative agent Mycobacterium tuberculosis (Mtb) and to reduce the development of active TB disease in latently infected individuals. Donor-unrestricted T cell responses represent such novel potential vaccine targets. HLA-E-restricted T cell responses have been shown to play an important role in protection against TB and other infections, and recent studies have demonstrated that these cells can be primed in vitro. However, the identification of novel pathogen-derived HLA-E binding peptides presented by infected target cells has been limited by the lack of accurate prediction algorithms for HLA-E binding. In this study, we developed an improved HLA-E binding peptide prediction algorithm and implemented it to identify (to our knowledge) novel Mtb-derived peptides with capacity to induce CD8+ T cell activation and that were recognized by specific HLA-E-restricted T cells in Mycobacterium-exposed humans. Altogether, we present a novel algorithm for the identification of pathogen- or self-derived HLA-E-presented peptides.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antígenos de Bactérias , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I , Humanos , Peptídeos , Antígenos HLA-E
10.
Methods Mol Biol ; 2574: 15-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36087196

RESUMO

Understanding the interactions involved during the immunological synapse between peptide, HLA-E molecules, and TCR is crucial to effectively target protective HLA-E-restricted T-cell responses in humans. Here we describe three techniques based on the generation of MHC-E/peptide complexes (MHC-E generically includes HLA-E-like molecules in human and nonhuman species, while HLA-E specifically refers to human molecules), which allow to investigate MHC-E/peptide binding at the molecular level through binding assays and by using peptide loaded HLA-E tetramers, to detect, isolate, and study peptide-specific HLA-E-restricted human T-cells.


Assuntos
Antígenos de Histocompatibilidade Classe I , Linfócitos T , Epitopos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Peptídeos , Antígenos HLA-E
11.
Trends Immunol ; 43(5): 355-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35370095

RESUMO

The essentially monomorphic human antigen presentation molecule HLA-E is an interesting candidate target to enable vaccination irrespective of genetic diversity. Predictive HLA-E peptide-binding motifs have been refined to facilitate HLA-E peptide discovery. HLA-E can accommodate structurally divergent peptides of both self and microbial origin. Intracellular processing and presentation pathways for peptides by HLA-E for T cell receptor (TCR) recognition remain to be elucidated. Recent studies show that, unlike canonical peptides, inhibition of the transporter associated with antigen presentation (TAP) is essential to allow HLA-E antigen presentation in cytomegalovirus (CMV) infection and possibly also of other non-canonical peptides. We propose three alternative and TAP-independent MHC-E antigen-presentation pathways, including for Mycobacterium tuberculosis infections. These insights may help in designing potential HLA-E targeting vaccines against tumors and pathogens.


Assuntos
Apresentação de Antígeno , Tuberculose , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteínas de Membrana Transportadoras , Peptídeos , Vacinação
12.
Front Immunol ; 12: 712021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899683

RESUMO

Diabetes mellites (DM) is correlated with increased susceptibility to and disease progression of tuberculosis (TB), and strongly impairs effective global TB control measures. To better control the TB-DM co-epidemic, unravelling the bidirectional interactivity between DM-associated molecular processes and immune responses to Mycobacterium tuberculosis (Mtb) is urgently required. Since poly (ADP-ribose) polymerase (PARP) activation has been associated with DM and with Mtb infection in mouse models, we have investigated whether PARP inhibition by pharmacological compounds can interfere with host protection against Mtb in human macrophage subsets, the predominant target cell of Mtb. Pharmacological inhibition of PARP decreased intracellular Mtb and MDR-Mtb levels in human macrophages, identifying PARP as a potential target for host-directed therapy against Mtb. PARP inhibition was associated with modified chemokine secretion and upregulation of cell surface activation markers by human macrophages. Targeting LDH, a secondary target of the PARP inhibitor rucaparib, resulted in decreased intracellular Mtb, suggesting a metabolic role in rucaparib-induced control of Mtb. We conclude that pharmacological inhibition of PARP is a potential novel strategy in developing innovative host-directed therapies against intracellular bacterial infections.


Assuntos
Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Tuberculose
13.
Front Immunol ; 12: 725447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691031

RESUMO

Introduction: There is an urgent medical need to differentiate active tuberculosis (ATB) from latent tuberculosis infection (LTBI) and prevent undertreatment and overtreatment. The aim of this study was to identify biomarker profiles that may support the differentiation between ATB and LTBI and to validate these signatures. Materials and Methods: The discovery cohort included adult individuals classified in four groups: ATB (n = 20), LTBI without prophylaxis (untreated LTBI; n = 20), LTBI after completion of prophylaxis (treated LTBI; n = 20), and healthy controls (HC; n = 20). Their sera were analyzed for 40 cytokines/chemokines and activity of adenosine deaminase (ADA) isozymes. A prediction model was designed to differentiate ATB from untreated LTBI using sparse partial least squares (sPLS) and logistic regression analyses. Serum samples of two independent cohorts (national and international) were used for validation. Results: sPLS regression analyses identified C-C motif chemokine ligand 1 (CCL1), C-reactive protein (CRP), C-X-C motif chemokine ligand 10 (CXCL10), and vascular endothelial growth factor (VEGF) as the most discriminating biomarkers. These markers and ADA(2) activity were significantly increased in ATB compared to untreated LTBI (p ≤ 0.007). Combining CCL1, CXCL10, VEGF, and ADA2 activity yielded a sensitivity and specificity of 95% and 90%, respectively, in differentiating ATB from untreated LTBI. These findings were confirmed in the validation cohort including remotely acquired untreated LTBI participants. Conclusion: The biomarker signature of CCL1, CXCL10, VEGF, and ADA2 activity provides a promising tool for differentiating patients with ATB from non-treated LTBI individuals.


Assuntos
Adenosina Desaminase/sangue , Quimiocina CCL1/sangue , Quimiocina CXCL10/sangue , Tuberculose Latente/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Testes Imunológicos , Tuberculose Latente/diagnóstico , Tuberculose Latente/imunologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Sobretratamento/prevenção & controle , Sensibilidade e Especificidade , Adulto Jovem
14.
Front Immunol ; 12: 739938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552598

RESUMO

Global increases in the prevalence of antimicrobial resistance highlight the urgent need for novel strategies to combat infectious diseases. Recent studies suggest that host metabolic pathways play a key role in host control of intracellular bacterial pathogens. In this study we explored the potential of targeting host metabolic pathways for innovative host-directed therapy (HDT) against intracellular bacterial infections. Through gene expression profiling in human macrophages, pyruvate metabolism was identified as potential key pathway involved in Salmonella enterica serovar Typhimurium (Stm) infections. Next, the effect of targeting pyruvate dehydrogenase kinases (PDKs) - which are regulators of the metabolic checkpoint pyruvate dehydrogenase complex (PDC) - on macrophage function and bacterial control was studied. Chemical inhibition of PDKs by dichloroacetate (DCA) induced PDC activation and was accompanied with metabolic rewiring in classically activated macrophages (M1) but not in alternatively activated macrophages (M2), suggesting cell-type specific effects of dichloroacetate on host metabolism. Furthermore, DCA treatment had minor impact on cytokine and chemokine secretion on top of infection, but induced significant ROS production by M1 and M2. DCA markedly and rapidly reduced intracellular survival of Stm, but interestingly not Mycobacterium tuberculosis, in human macrophages in a host-directed manner. In conclusion, DCA represents a promising novel HDT compound targeting pyruvate metabolism for the treatment of Stm infections.


Assuntos
Antibacterianos/farmacologia , Ácido Dicloroacético/farmacologia , Macrófagos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/patogenicidade , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Ativação de Macrófagos , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/microbiologia , Fenótipo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/enzimologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia
15.
Front Immunol ; 12: 620622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777000

RESUMO

Background: In individuals living with HIV infection the development of tuberculosis (TB) is associated with rapid progression from asymptomatic TB infection to active TB disease. Sputum-based diagnostic tests for TB have low sensitivity in minimal and subclinical TB precluding early diagnosis. The immune response to novel Mycobacterium tuberculosis in-vivo expressed and latency associated antigens may help to measure the early stages of infection and disease progression and thereby improve early diagnosis of active TB disease. Methods: Serial prospectively sampled cryopreserved lymphocytes from patients of the Swiss HIV Cohort Study developing TB disease ("cases") and matched patients with no TB disease ("controls") were stimulated with 10 novel Mycobacterium tuberculosis antigens. Cytokine concentrations were measured in cases and controls at four time points prior to diagnosis of TB: T1-T4 with T4 being the closest time point to diagnosis. Results: 50 samples from nine cases and nine controls were included. Median CD4 cell count at T4 was 289/ul for the TB-group and 456/ul for the control group. Viral loads were suppressed in both groups. At T4 Rv2431c-induced and Rv3614/15c-induced interferon gamma-induced protein (IP)-10 responses and Rv2031c-induced and Rv2346/Rv2347c-induced tumor necrosis factor (TNF)-α responses were significantly higher in cases compared to controls (p < 0.004). At T3 - being up to 2 years prior to TB diagnosis - Rv2031c-induced TNF-α was significantly higher in cases compared to controls (p < 0.004). Area under the receiver operating characteristics (AUROC) curves resulted in an AUC > 0.92 for all four antigen-cytokine pairs. Conclusion: The in vitro Mycobacterium tuberculosis-specific immune response in HIV-infected individuals that progress toward developing TB disease is different from those in HIV-infected individuals that do not progress to developing TB. These differences precede the clinical diagnosis of active TB up to 2 years, paving the way for the development of immune based diagnostics to predict TB disease at an early stage.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Adulto , Antígenos de Bactérias/imunologia , Estudos de Casos e Controles , Células Cultivadas , Estudos de Coortes , Citocinas/metabolismo , Feminino , Infecções por HIV/diagnóstico , Humanos , Imunidade , Testes Imunológicos , Tuberculose Latente/diagnóstico , Masculino , Pessoa de Meia-Idade , Tuberculose/diagnóstico
16.
J Infect ; 82(2): 245-252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278400

RESUMO

OBJECTIVES: IFNγ-release assays (IGRAs) used for diagnosis of Mycobacterium (M.) tuberculosis infection have limited sensitivity. Alternative cytokines and M. tuberculosis latency-associated antigens may improve immune-based tests. METHODS: Multiplex cytokine analyses was done in culture supernatants after 6-day in vitro restimulation with M. tuberculosis IGRA and latency-associated antigens (i.e. Rv2628, Rv1733) in tuberculosis patients (n = 22) and asymptomatic contacts (AC)s (n = 20) from Ghana. RESULTS: Four cytokines (i.e. IFNγ, IP-10, IL-22 and IL-6) were significantly increased after IGRA-antigen specific restimulation. IFNγ, IP-10, and IL-22 correlated positively and showed no differences between the study groups whereas IGRA-antigen induced IL-6 was significantly higher in tuberculosis patients. Using adjusted IGRA criteria, IL-6 showed the highest sensitivity for detection of tuberculosis patients (91%) and ACs (85%) as compared to IFNγ, IP-10, and IL-22. Rv2628 and Rv1733 restimulation induced significantly higher IFNγ, IP-10, and IL-22 concentrations in ACs. Combined antigen/cytokine analyses identified study group specific patterns and a combination of Rv2628/Rv1733 induced IFNγ with IGRA-antigen induced IL-6 was optimal for classification of tuberculosis patients and ACs (AUC: 0.92, p<0.0001). CONCLUSIONS: We demonstrate the potency of alternative cytokines, especially IL-6, and latency-associated antigens Rv1733/Rv2628 to improve detection of M. tuberculosis infection and to classify tuberculosis patients and healthy contacts.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Antígenos de Bactérias , Gana , Humanos , Interferon gama , Interleucina-6 , Tuberculose Latente/diagnóstico , Tuberculose/diagnóstico
17.
J Immunol ; 205(10): 2861-2872, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020145

RESUMO

Ag presentation via the nonclassical MHC class Ib molecule HLA-E, with nearly complete identity between the two alleles expressed in humans, HLA-E*01:01 and HLA-E*01:03, can lead to the activation of unconventional T cells in humans. Despite this virtual genetic monomorphism, differences in peptide repertoires binding to the two allelic variants have been reported. To further dissect and compare peptide binding to HLA-E*01:01 and HLA-E*01:03, we used an UV-mediated peptide exchange binding assay and an HPLC-based competition binding assay. In addition, we investigated binding of these same peptides to Mamu-E, the nonhuman primate homologue of human HLA-E, and to the HLA-E-like molecule Qa-1b in mice. We next exploited the differences and homologies in the peptide binding pockets of these four molecules to identify allele specific as well as common features of peptide binding motifs across species. Our results reveal differences in peptide binding preferences and intensities for each human HLA-E variant compared with Mamu-E and Qa-1b Using extended peptide libraries, we identified and refined the peptide binding motifs for each of the four molecules and found that they share main anchor positions, evidenced by conserved amino acid preferences across the four HLA-E molecules studied. In addition, we also identified differences in peptide binding motifs, which could explain the observed variations in peptide binding preferences and affinities for each of the four HLA-E-like molecules. Our results could help with guiding the selection of candidate pathogen-derived peptides with the capacity to target HLA-E-restricted T cells that could be mobilized in vaccination and immunotherapeutic strategies.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Ligação Proteica/genética , Linfócitos T/imunologia , Alelos , Sequência de Aminoácidos/genética , Animais , Antígenos/imunologia , Antígenos/metabolismo , Sequência Conservada/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Macaca fascicularis , Camundongos , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Linfócitos T/metabolismo , Antígenos HLA-E
18.
Front Immunol ; 11: 577815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117380

RESUMO

T cells recognizing epitopes on the surface of mycobacteria-infected macrophages can impart protection, but with associated risk for reactivation to lung pathology. We aimed to identify antibodies specific to such epitopes, which carry potentials for development toward novel therapeutic constructs. Since epitopes presented in the context of major histocompatibility complex alleles are rarely recognized by naturally produced antibodies, we used a phage display library for the identification of monoclonal human single domain antibody producing clones. The selected 2C clone displayed T cell receptor-like recognition of an HLA-A*0201 bound 199KLVANNTRL207 peptide from the Ag85B antigen, which is known to be an immunodominant epitope for human T cells. The specificity of the selected domain antibody was demonstrated by solid phase immunoassay and by immunofluorescent surface staining of peptide loaded cells of the T2 cell line. The antibody affinity binding was determined by biolayer interferometry. Our results validated the used technologies as suitable for the generation of antibodies against epitopes on the surface of Mycobacterium tuberculosis infected cells. The potential approaches forward the development of antibody in immunotherapy of tuberculosis have been outlined in the discussion.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Antituberculosos/farmacologia , Proteínas de Bactérias/imunologia , Antígenos HLA-A/imunologia , Epitopos Imunodominantes , Mycobacterium tuberculosis/imunologia , Anticorpos de Cadeia Única/farmacologia , Linfócitos T/imunologia , Tuberculose/prevenção & controle , Especificidade de Anticorpos , Antituberculosos/imunologia , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
19.
Commun Biol ; 3(1): 359, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647325

RESUMO

Tuberculosis (TB) is a global health concern. Treatment is prolonged, and patients on anti-TB therapy (ATT) often experience treatment failure for various reasons. There is an urgent need to identify signatures for early detection of failure and initiation of a treatment switch.We investigated how gene biomarkers and/or basic patient characteristics could be used to define signatures for treatment outcomes in Indian adult pulmonary-TB patients treated with standard ATT. Using blood samples at baseline, a 12-gene signature combined with information on gender, previously-diagnosed TB, severe thinness, smoking and alcohol consumption was highly predictive of treatment failure at 6 months. Likewise a 4-protein biomarker signature combined with the same patient characteristics was almost as highly predictive of treatment failure. Combining biomarkers and basic patient characteristics may be useful for predicting and hence identification of treatment failure at an early stage of TB therapy.


Assuntos
Antituberculosos/uso terapêutico , Marcadores Genéticos , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Transcriptoma , Tuberculose/sangue , Adolescente , Adulto , Idoso , Feminino , Seguimentos , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Resultado do Tratamento , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose/microbiologia , Adulto Jovem
20.
Sci Rep ; 10(1): 11635, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669636

RESUMO

Tuberculosis is a highly infectious and potentially fatal disease accompanied by wasting symptoms, which cause severe metabolic changes in infected people. In this study we have compared the effect of mycobacteria infection on the level of metabolites in blood of humans and mice and whole zebrafish larvae using one highly standardized mass spectrometry pipeline, ensuring technical comparability of the results. Quantification of a range of circulating small amines showed that the levels of the majority of these compounds were significantly decreased in all three groups of infected organisms. Ten of these metabolites were common between the three different organisms comprising: methionine, asparagine, cysteine, threonine, serine, tryptophan, leucine, citrulline, ethanolamine and phenylalanine. The metabolomic changes of zebrafish larvae after infection were confirmed by nuclear magnetic resonance spectroscopy. Our study identified common biomarkers for tuberculosis disease in humans, mice and zebrafish, showing across species conservation of metabolic reprogramming processes as a result of disease. Apparently, the mechanisms underlying these processes are independent of environmental, developmental and vertebrate evolutionary factors. The zebrafish larval model is highly suited to further investigate the mechanism of metabolic reprogramming and the connection with wasting syndrome due to infection by mycobacteria.


Assuntos
Aminas/análise , Glucose/metabolismo , Tuberculose/metabolismo , Peixe-Zebra/metabolismo , Aminas/química , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Humanos , Larva/metabolismo , Larva/microbiologia , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium marinum , Mycobacterium tuberculosis , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA