Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700010

RESUMO

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Assuntos
Antibióticos Antineoplásicos , Monóxido de Carbono , Cardiotoxicidade , Doxorrubicina , Proteínas de Membrana , Animais , Doxorrubicina/toxicidade , Monóxido de Carbono/metabolismo , Antibióticos Antineoplásicos/toxicidade , Feminino , Administração Oral , Camundongos , Heme Oxigenase-1/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Cardiopatias/metabolismo , Cardiopatias/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Carboxihemoglobina/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Humanos
2.
Adv Sci (Weinh) ; 11(9): e2308346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084435

RESUMO

Modulation of autophagy, specifically its inhibition, stands to transform the capacity to effectively treat a broad range of cancers. However, the clinical efficacy of autophagy inhibitors has been inconsistent. To delineate clinical and epidemiological features associated with autophagy inhibition and a positive oncological clinical response, a retrospective analysis of patients is conducted treated with hydroxychloroquine, a known autophagy inhibitor. A direct correlation between smoking status and inhibition of autophagy with hydroxychloroquine is identified. Recognizing that smoking is associated with elevated circulating levels of carbon monoxide (CO), it is hypothesized that supplemental CO can amplify autophagy inhibition. A novel, gas-entrapping material containing CO in a pre-clinical model is applied and demonstrated that CO can dramatically increase the cytotoxicity of autophagy inhibitors and significantly inhibit the growth of tumors when used in combination. These data support the notion that safe, therapeutic levels of CO can markedly enhance the efficacy of autophagy inhibitors, opening a promising new frontier in the quest to improve cancer therapies.


Assuntos
Hidroxicloroquina , Neoplasias Pulmonares , Masculino , Humanos , Hidroxicloroquina/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Monóxido de Carbono/farmacologia , Próstata , Estudos Retrospectivos , Autofagia
3.
Ann Surg ; 278(6): e1277-e1288, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154066

RESUMO

OBJECTIVE: Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND: Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS: We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS: Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS: Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.


Assuntos
Anti-Infecciosos , Neutrófilos , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , Actinas/metabolismo , Receptor Toll-Like 9/metabolismo , DNA Mitocondrial/metabolismo , Peptídeos/metabolismo , Heme/metabolismo
4.
Adv Sci (Weinh) ; 10(10): e2205995, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36727291

RESUMO

Tumor hypoxia drives resistance to many cancer therapies, including radiotherapy and chemotherapy. Methods that increase tumor oxygen pressures, such as hyperbaric oxygen therapy and microbubble infusion, are utilized to improve the responses to current standard-of-care therapies. However, key obstacles remain, in particular delivery of oxygen at the appropriate dose and with optimal pharmacokinetics. Toward overcoming these hurdles, gas-entrapping materials (GeMs) that are capable of tunable oxygen release are formulated. It is shown that injection or implantation of these materials into tumors can mitigate tumor hypoxia by delivering oxygen locally and that these GeMs enhance responsiveness to radiation and chemotherapy in multiple tumor types. This paper also demonstrates, by comparing an oxygen (O2 )-GeM to a sham GeM, that the former generates an antitumorigenic and immunogenic tumor microenvironment in malignant peripheral nerve sheath tumors. Collectively the results indicate that the use of O2 -GeMs is promising as an adjunctive strategy for the treatment of solid tumors.


Assuntos
Oxigenoterapia Hiperbárica , Neoplasias , Humanos , Oxigênio , Neoplasias/tratamento farmacológico , Hipóxia Tumoral , Microambiente Tumoral
5.
J Trauma Acute Care Surg ; 94(2): 187-196, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36694330

RESUMO

INTRODUCTION: Multiple large clinical trauma trials have documented an increased susceptibility to infection after injury. Although neutrophils (polymorphonuclear leukocytes [PMNs]) were historically considered a homogeneous cell type, we hypothesized that injury could alter neutrophil heterogeneity and predispose to dysfunction. To explore whether trauma modifies PMN heterogeneity, we performed an observational mass-spectrometry-based cytometry study on total leukocytes and low-density PMNs found in the peripheral blood mononuclear cell fraction of leukocytes from healthy controls and trauma patients. METHODS: A total of 74 samples from 12 trauma patients, each sampled at 1 or more time points, and matched controls were fractionated and profiled by mass-spectrometry-based cytometry using a panel of 44 distinct markers. After deconvolution and conservative gating on neutrophils, data were analyzed using Seurat, followed by clustering of principal components. RESULTS: Eleven distinct neutrophil populations were resolved in control and trauma neutrophils based on differential protein surface marker expression. Trauma markedly altered the basal heterogeneity of neutrophil subgroups seen in the control samples, with loss of a dominant population of resting neutrophils marked by high expression of C3AR and low levels of CD63, CD64, and CD177 (cluster 1), and expansion of two alternative neutrophil populations, one of which is marked by high expression of CD177 with suppression of CD10, CD16, C3AR, CD63, and CD64 (cluster 6). Remarkably, following trauma, a substantially larger percentage of neutrophils sediment in the monocyte fraction. These low-density neutrophils bear markers of functional exhaustion and form a unique trauma-induced population (cluster 9) with markedly upregulated expression of active surface adhesion molecules (activated CD11b/CD18), with suppression of nearly all other surface markers, including receptors for formyl peptides, leukotrienes, chemokines, and complement. CONCLUSION: Circulating neutrophils demonstrate considerable evidence of functional heterogeneity that is markedly altered by trauma. Trauma induces evolution of a novel, exhausted, low-density neutrophil population with immunosuppressive features.


Assuntos
Antígenos CD18 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Antígenos CD18/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos/metabolismo , Quimiocinas
6.
Thorax ; 78(2): 151-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613855

RESUMO

RATIONALE: The increased mortality and morbidity seen in critically injured patients appears associated with systemic inflammatory response syndrome (SIRS) and immune dysfunction, which ultimately predisposes to infection. Mitochondria released by injury could generate danger molecules, for example, ATP, which in turn would be rapidly scavenged by ectonucleotidases, expressed on regulatory immune cells. OBJECTIVE: To determine the association between circulating mitochondria, purinergic signalling and immune dysfunction after trauma. METHODS: We tested the impact of hepatocyte-derived free mitochondria on blood-derived and lung-derived CD8 T cells in vitro and in experimental mouse models in vivo. In parallel, immune phenotypic analyses were conducted on blood-derived CD8 T cells obtained from trauma patients. RESULTS: Isolated intact mitochondria are functional and generate ATP ex vivo. Extracellular mitochondria perturb CD8+ T cells in co-culture, inducing select features of immune exhaustion in vitro. These effects are modulated by scavenging ATP, modelled by addition of apyrase in vitro. Injection of intact mitochondria into recipient mice markedly upregulates the ectonucleotidase CD39, and other immune checkpoint markers in circulating CD8+ T cells. We note that mice injected with mitochondria, prior to instilling bacteria into the lung, exhibit more severe lung injury, characterised by elevated neutrophil influx and by changes in CD8+ T cell cytotoxic capacity. Importantly, the development of SIRS in injured humans, is likewise associated with disordered purinergic signalling and CD8 T cell dysfunction. CONCLUSION: These studies in experimental models and in a cohort of trauma patients reveal important associations between extracellular mitochondria, aberrant purinergic signalling and immune dysfunction. These pathogenic factors with immune exhaustion are linked to SIRS and could be targeted therapeutically.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias , Síndrome de Resposta Inflamatória Sistêmica/metabolismo
7.
Sci Transl Med ; 14(651): eabl4135, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767653

RESUMO

Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Monóxido de Carbono/uso terapêutico , Colite/tratamento farmacológico , Gases , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Suínos
8.
J Mol Biol ; 434(9): 167533, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314146

RESUMO

The neutrophil NADPH oxidase produces both intracellular and extracellular reactive oxygen species (ROS). Although oxidase activity is essential for microbial killing, and ROS can act as signaling molecules in the inflammatory process, excessive extracellular ROS directly contributes to inflammatory tissue damage, as well as to cancer progression and immune dysregulation in the tumor microenvironment. How specific signaling pathways contribute to ROS localization is unclear. Here we used a systems pharmacology approach to identify the specific Class I PI3-K isoform p110ß, and PLD1, but not PLD2, as critical regulators of extracellular, but not intracellular ROS production in primary neutrophils. Combined crystallographic and molecular dynamics analysis of the PX domain of the oxidase component p47phox, which binds the lipid products of PI 3-K and PLD, was used to clarify the membrane-binding mechanism and guide the design of mutant mice whose p47phox is unable to bind 3-phosphorylated inositol phospholipids. Neutrophils from these K43A mutant animals were specifically deficient in extracellular, but not intracellular, ROS production, and showed increased dependency on signaling through the remaining PLD1 arm. These findings identify the PX domain of p47phox as a critical integrator of PLD1 and p110ß signaling for extracellular ROS production, and as a potential therapeutic target for modulating tissue damage and extracellular signaling during inflammation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , NADPH Oxidases , Neutrófilos , Espécies Reativas de Oxigênio , Animais , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Ativação Enzimática , Inflamação , Camundongos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
J Trauma Acute Care Surg ; 92(2): 330-338, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789698

RESUMO

BACKGROUND: Trauma increases susceptibility to secondary bacterial infections. The events suppressing antimicrobial immunity are unclear. Polymorphonuclear neutrophils (PMNs) migrate toward bacteria using chemotaxis, trap them in extracellular neutrophil extracellular traps, and kill them using respiratory burst (RB). We hypothesized that plasma and wound fluids from trauma patients alter PMN function. METHODS: Volunteer PMNs were incubated in plasma or wound fluids from trauma patients (days 0 and 1, days 2 and 3), and their functions were compared with PMNs incubated in volunteer plasma. Chemotaxis was assessed in transwells. Luminometry assessed total and intracellular RB responses to receptor-dependent and independent stimulants. Neutrophil extracellular trap formation was assessed using elastase assays. The role of tissue necrosis in creating functionally suppressive systemic PMN environments was assessed using a novel pig model where PMNs were incubated in uninjured pig plasma or plasma from pigs undergoing intraperitoneal instillation of liver slurry. RESULTS: Both plasma and wound fluids from trauma patients markedly suppress total PMN RB. Intracellular RB is unchanged, implicating suppression of extracellular RB. Wound fluids are more suppressive than plasma. Biofluids suppressed RB maximally early after injury and their effects decayed with time. Chemotaxis and neutrophil extracellular trap formation were suppressed by biofluids similarly. Lastly, plasma from pigs undergoing abdominal liver slurry instillation suppressed PMN RB, paralleling suppression by human trauma biofluids. CONCLUSION: Trauma plasma and wound fluids suppress RB and other key PMNs antimicrobial functions. Circulating suppressive signals can be derived from injured or necrotic tissue at wound sites, suggesting a key mechanism by which tissue injuries can put the host at risk for infection.


Assuntos
Neutrófilos/imunologia , Explosão Respiratória/imunologia , Ferimentos e Lesões/imunologia , Animais , Quimiotaxia , Exsudatos e Transudatos/imunologia , Humanos , Volume Plasmático/imunologia , Suínos
10.
Arterioscler Thromb Vasc Biol ; 41(6): 1915-1927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33853347
11.
J Trauma Acute Care Surg ; 90(1): 46-53, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021603

RESUMO

BACKGROUND: Trauma and sepsis both increase the risk for secondary infections. Injury mobilizes mitochondrial (MT) danger-associated molecular patterns (mtDAMPs) directly from cellular necrosis. It is unknown, however, whether sepsis can cause active MT release and whether mtDAMPs released by sepsis might affect innate immunity. METHODS: Mitochondrial release from human monocytes (Mo) was studied after LPS stimulation using electron microscopy and using fluorescent video-microscopy of adherent Mo using Mito-Tracker Green (MTG) dye. Release of MTG+ microparticles was studied using flow cytometry after bacterial stimulation by size exclusion chromatography of supernatants with polymerase chain reaction (PCR) for mitochondrial DNA (mtDNA). Human neutrophil (PMN), chemotaxis, and respiratory burst were studied after PMN incubation with mtDNA. RESULTS: LPS caused Mo to release mtDAMPs. Electron microscopy showed microparticles containing MT. mtDNA was present both in microvesicles and exosomes as shown by PCR of the relevant size exclusion chromatography bands. In functional studies, PMN incubation with mtDNA suppressed chemotaxis in a dose-dependent manner, which was reversed by chloroquine, suggesting an endosomal, toll-like receptor-9-dependent mechanism. In contrast, PMN respiratory burst was unaffected by mtDNA. CONCLUSION: In addition to passive release of mtDAMPs by traumatic cellular disruption, inflammatory and infectious stimuli cause active mtDAMP release via microparticles. mtDNA thus released can have effects on PMN that may suppress antimicrobial function. mtDAMP-mediated "feed-forward" mechanisms may modulate immune responses and potentially be generalizable to other forms of inflammation. Where they cause immune dysfunction the effects can be mitigated if the pathways by which the mtDAMPs act are defined. In this case, the endosomal inhibitor chloroquine is benign and well tolerated. Thus, it may warrant study as a prophylactic antiinfective after injury or prior sepsis.


Assuntos
Alarminas/metabolismo , Quimiotaxia , Exocitose , Mitocôndrias/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo , Cromatografia em Gel , Citometria de Fluxo , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
12.
Ann Surg ; 272(4): 604-610, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32932316

RESUMO

OBJECTIVES: Sepsis and sterile both release "danger signals' that induce the systemic inflammatory response syndrome (SIRS). So differentiating infection from SIRS can be challenging. Precision diagnostic assays could limit unnecessary antibiotic use, improving outcomes. METHODS: After surveying human leukocyte cytokine production responses to sterile damage-associated molecular patterns (DAMPs), bacterial pathogen-associated molecular patterns, and bacteria we created a multiplex assay for 31 cytokines. We then studied plasma from patients with bacteremia, septic shock, "severe sepsis," or trauma (ISS ≥15 with circulating DAMPs) as well as controls. Infections were adjudicated based on post-hospitalization review. Plasma was studied in infection and injury using univariate and multivariate means to determine how such multiplex assays could best distinguish infective from noninfective SIRS. RESULTS: Infected patients had high plasma interleukin (IL)-6, IL-1α, and triggering receptor expressed on myeloid cells-1 (TREM-1) compared to controls [false discovery rates (FDR) <0.01, <0.01, <0.0001]. Conversely, injury suppressed many mediators including MDC (FDR <0.0001), TREM-1 (FDR <0.001), IP-10 (FDR <0.01), MCP-3 (FDR <0.05), FLT3L (FDR <0.05), Tweak, (FDR <0.05), GRO-α (FDR <0.05), and ENA-78 (FDR <0.05). In univariate studies, analyte overlap between clinical groups prevented clinical relevance. Multivariate models discriminated injury and infection much better, with the 2-group random-forest model classifying 11/11 injury and 28/29 infection patients correctly in out-of-bag validation. CONCLUSIONS: Circulating cytokines in traumatic SIRS differ markedly from those in health or sepsis. Variability limits the accuracy of single-mediator assays but machine learning based on multiplexed plasma assays revealed distinct patterns in sepsis- and injury-related SIRS. Defining biomarker release patterns that distinguish specific SIRS populations might allow decreased antibiotic use in those clinical situations. Large prospective studies are needed to validate and operationalize this approach.


Assuntos
Citocinas/sangue , Sepse/sangue , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Relatórios Anuais como Assunto , Diagnóstico Diferencial , Cirurgia Geral , Testes Hematológicos/métodos , Humanos , Estudos Prospectivos , Sepse/imunologia , Sociedades Médicas , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Estados Unidos
13.
Crit Care Med ; 48(2): e123-e132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939811

RESUMO

OBJECTIVES: Trauma predisposes to systemic sterile inflammation (systemic inflammatory response syndrome) as well as infection, but the mechanisms linking injury to infection are poorly understood. Mitochondrial debris contains formyl peptides. These bind formyl peptide receptor-1, trafficking neutrophils to wounds, initiating systemic inflammatory response syndrome, and wound healing. Bacterial formyl peptides, however, also attract neutrophils via formyl peptide receptor-1. Thus, mitochondrial formyl peptides might suppress neutrophils antimicrobial function. Also, formyl peptide receptor-1 blockade used to mitigate systemic inflammatory response syndrome might predispose to sepsis. We examined how mitochondrial formyl peptides impact neutrophils functions contributing to antimicrobial responses and how formyl peptide receptor-1 antagonists affect those functions. DESIGN: Prospective study of human and murine neutrophils and clinical cohort analysis. SETTING: University research laboratory and level 1 trauma center. PATIENTS: Trauma patients, volunteer controls. ANIMAL SUBJECTS: C57Bl/6, formyl peptide receptor-1, and formyl peptide receptor-2 knockout mice. INTERVENTIONS: Human and murine neutrophils functions were activated with autologous mitochondrial debris, mitochondrial formyl peptides, or bacterial formyl peptides followed by chemokines or leukotrienes. The experiments were repeated using formyl peptide receptor-1 antagonist cyclosporin H, "designer" human formyl peptide receptor-1 antagonists (POL7178 and POL7200), or anti-formyl peptide receptor-1 antibodies. Mouse injury/lung infection model was used to evaluate effect of formyl peptide receptor-1 inhibition. MEASUREMENTS AND MAIN RESULTS: Human neutrophils cytosolic calcium, chemotaxis, reactive oxygen species production, and phagocytosis were studied before and after exposure to mitochondrial debris, mitochondrial formyl peptides, and bacterial formyl peptides. Mitochondrial formyl peptide and bacterial formyl peptides had similar effects on neutrophils. Responses to chemokines and leukotrienes were suppressed by prior exposure to formyl peptides. POL7200 and POL7178 were specific antagonists of human formyl peptide receptor-1 and more effective than cyclosporin H or anti-formyl peptide receptor-1 antibodies. Formyl peptides inhibited mouse neutrophils responses to chemokines only if formyl peptide receptor-1 was present. Formyl peptide receptor-1 blockade did not inhibit neutrophils bacterial phagocytosis or reactive oxygen species production. Cyclosporin H increased bacterial clearance in lungs after injury. CONCLUSIONS: Formyl peptides both activate and desensitize neutrophils. Formyl peptide receptor-1 blockade prevents desensitization, potentially both diminishing systemic inflammatory response syndrome and protecting the host against secondary infection after tissue trauma or primary infection.


Assuntos
Proteínas Mitocondriais/imunologia , Ativação de Neutrófilo/imunologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Animais , Ciclosporina/farmacologia , Humanos , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções Respiratórias/fisiopatologia
14.
Med Res Rev ; 40(4): 1147-1177, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31820474

RESUMO

Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Monóxido de Carbono/uso terapêutico , Injúria Renal Aguda/etiologia , Animais , Monóxido de Carbono/administração & dosagem , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos
15.
Front Immunol ; 10: 1765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402920

RESUMO

Cellular protective mechanisms exist to ensure survival of the cells and are a fundamental feature of all cells that is necessary for adapting to changes in the environment. Indeed, evolution has ensured that each cell is equipped with multiple overlapping families of genes that safeguard against pathogens, injury, stress, and dysfunctional metabolic processes. Two of the better-known enzymatic systems, conserved through all species, include the heme oxygenases (HO-1/HO-2), and the ectonucleotidases (CD39/73). Each of these systems generates critical bioactive products that regulate the cellular response to a stressor. Absence of these molecules results in the cell being extremely predisposed to collapse and, in most cases, results in the death of the cell. Recent reports have begun to link these two metabolic pathways, and what were once exclusively stand-alone are now being found to be intimately interrelated and do so through their innate ability to generate bioactive products including adenosine, carbon monoxide, and bilirubin. These simple small molecules elicit profound cellular physiologic responses that impact a number of innate immune responses, and participate in the regulation of inflammation and tissue repair. Collectively these enzymes are linked not only because of the mitochondria being the source of their substrates, but perhaps more importantly, because of the impact of their products on specific cellular responses. This review will provide a synopsis of the current state of the field regarding how these systems are linked and how they are now being leveraged as therapeutic modalities in the clinic.


Assuntos
Apirase/metabolismo , Heme Oxigenase-1/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Heme/metabolismo , Humanos , Imunidade Inata
16.
J Exp Med ; 216(9): 2202-2220, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31235510

RESUMO

Emerging evidence suggests that extracellular vesicle (EV)-containing miRNAs mediate intercellular communications in response to noxious stimuli. It remains unclear how a cell selectively sorts the cellular miRNAs into EVs. We report that caveolin-1 (cav-1) is essential for sorting of selected miRNAs into microvesicles (MVs), a main type of EVs generated by outward budding of the plasma membrane. We found that cav-1 tyrosine 14 (Y14)-phosphorylation leads to interactions between cav-1 and hnRNPA2B1, an RNA-binding protein. The cav-1/hnRNPA2B1 complex subsequently traffics together into MVs. Oxidative stress induces O-GlcNAcylation of hnRNPA2B1, resulting in a robustly altered hnRNPA2B1-bound miRNA repertoire. Notably, cav-1 pY14 also promotes hnRNPA2B1 O-GlcNAcylation. Functionally, macrophages serve as the principal recipient of epithelial MVs in the lung. MV-containing cav-1/hnRNPA2B1 complex-bound miR-17/93 activate tissue macrophages. Collectively, cav-1 is the first identified membranous protein that directly guides RNA-binding protein into EVs. Our work delineates a novel mechanism by which oxidative stress compels epithelial cells to package and secrete specific miRNAs and elicits an innate immune response.


Assuntos
Caveolina 1/metabolismo , Micropartículas Derivadas de Células/metabolismo , MicroRNAs/metabolismo , Acetilglucosamina/metabolismo , Animais , Caveolina 1/química , Linhagem Celular , Micropartículas Derivadas de Células/ultraestrutura , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Glicosilação , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Inflamação/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Estresse Oxidativo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Domínios Proteicos
17.
J Immunol ; 202(10): 2982-2990, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952817

RESUMO

Biliverdin reductase (BVR)-A is a pleotropic enzyme converting biliverdin to bilirubin and a signaling molecule that has cytoprotective and immunomodulatory effects. We recently showed that biliverdin inhibits the expression of complement activation fragment 5a receptor one (C5aR1) in RAW 264.7 macrophages. In this study, we investigated the role of BVR-A in determining macrophage inflammatory phenotype and function via regulation of C5aR1. We assessed expression of C5aR1, M1-like macrophage markers, including chemokines (RANTES, IP-10), as well as chemotaxis in response to LPS and C5a in bone marrow-derived macrophages from BVR fl/fl and LysM-Cre:BVR fl / fl mice (conditional deletion of BVR-A in myeloid cells). In response to LPS, macrophages isolated from LysM-Cre:BVR fl/fl showed significantly elevated levels of C5aR1 as well as chemokines (RANTES, IP10) but not proinflammatory markers, such as iNOS and TNF. An increase in C5aR1 expression was also observed in peritoneal macrophages and several tissues from LysM-Cre:BVR fl/fl mice in a model of endotoxemia. In addition, knockdown of BVR-A resulted in enhanced macrophage chemotaxis toward C5a. Part of the effects of BVR-A deletion on chemotaxis and RANTES expression were blocked in the presence of a C5aR1 neutralizing Ab, confirming the role of C5a-C5aR1 signaling in mediating the effects of BVR. In summary, BVR-A plays an important role in regulating macrophage chemotaxis in response to C5a via modulation of C5aR1 expression. In addition, macrophages lacking BVR-A are characterized by the expression of M1 polarization-associated chemokines, the levels of which depend in part on C5aR1 signaling.


Assuntos
Quimiocinas/imunologia , Quimiotaxia/imunologia , Complemento C5a/imunologia , Macrófagos/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Receptor da Anafilatoxina C5a/imunologia , Transdução de Sinais/imunologia , Animais , Quimiocinas/genética , Quimiotaxia/genética , Complemento C5a/genética , Deleção de Genes , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais/genética
18.
J Autoimmun ; 94: 122-133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30098863

RESUMO

In Crohn's disease, pathogenic Th17-cells express low levels of CD39 ectonucleotidase and are refractory to the immunosuppressive effects of unconjugated bilirubin (UCB), an endogenous ligand for aryl-hydrocarbon-receptor (AhR). This resistance to AhR ligation might be associated with alterations in responses to hypoxia. Limited exposure to hypoxia appears beneficial in acute tissue injury. However, in protracted inflammation, hypoxemia may paradoxically result in Th17-cell activation. We report here that in vitro exposure of Th17-cells from Crohn's disease patients to hypoxia limits responsiveness to AhR stimulation by UCB, as reflected by lower CD39 levels. Blockade of hypoxia-inducible-factor-1alpha (HIF-1α) upregulates CD39 and favors Th17-cell regulatory responses. Resistance of Th17-cells to AhR signaling results, in part, from HIF-1α-dependent induction of ATP-binding cassette (ABC) transporters: multidrug-resistance-protein-1 (MDR1) and multidrug-resistance-associated-protein-4 (MRP4). Increased ABC transporters promote efflux of suppressive AhR ligands, such as UCB, from Th17-cells. Inhibition of MDR1, MRP4 and/or HIF-1α with ritonavir (RTV) reconstitutes AhR function in Th17-cells, enhancing therapeutic effects of UCB in dextran-sulfate-sodium-induced experimental colitis. Deleterious effects of hypoxia on Th17-cells in Crohn's disease can be ameliorated either by inhibiting HIF-1α or by suppressing ABC transporters to increase UCB availability as an AhR substrate. Targeting HIF-1α-ABC transporters could provide innovative therapeutic pathways for IBD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Colite/imunologia , Doença de Crohn/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/imunologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Apirase/genética , Apirase/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bilirrubina/imunologia , Bilirrubina/farmacologia , Hipóxia Celular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Doença de Crohn/genética , Doença de Crohn/patologia , Sulfato de Dextrana/administração & dosagem , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa/imunologia , Mucosa/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Receptores de Hidrocarboneto Arílico/genética , Ritonavir/farmacologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/patologia
19.
Nat Chem ; 10(7): 787-794, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29760413

RESUMO

Controlled activation is a critical component in prodrug development. Here we report a concentration-sensitive platform approach for bioorthogonal prodrug activation by taking advantage of reaction kinetics. Using two 'click and release' systems, we demonstrate enrichment and prodrug activation specifically in mitochondria to demonstrate the principle of the approach. In both cases, the payload (doxorubicin or carbon monoxide) was released inside the mitochondrial matrix following the enrichment-initiated click reaction. Furthermore, mitochondria-targeted delivery yielded substantial augmentation of functional biological and therapeutic effects in vitro and in vivo when compared to controls, which did not result in enrichment. This method is thus a platform for targeted drug delivery that is amenable to conjugation with a variety of molecules and is not limited to cell-surface delivery. Taken together, these two 'click and release' pairs clearly demonstrate the concept of enrichment-triggered drug release and the critical feasibility of treating clinically relevant diseases such as acute liver injury and cancer.


Assuntos
Monóxido de Carbono/metabolismo , Doxorrubicina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias/metabolismo , Pró-Fármacos/metabolismo , Animais , Monóxido de Carbono/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Química Click , Ciclização , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Cinética , Camundongos , Neoplasias/tratamento farmacológico , Células RAW 264.7
20.
J Trauma Acute Care Surg ; 85(5): 936-943, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29787548

RESUMO

BACKGROUND: Trauma causes inflammation by releasing mitochondria that act as Danger-Associated Molecular Patterns (DAMPs). Trauma also increases susceptibility to infection. Human mitochondria contain 13 N-formyl peptides (mtFPs). We studied whether mtFPs released into plasma by clinical injury induce neutrophil (PMN) inflammatory responses, whether their potency reflects their similarity to bacterial FPs and how their presence at clinically relevant concentration affects PMN function. METHODS: N-terminal sequences of the 13 mtFPs were synthesized. Changes in human PMN cytosolic Ca concentration ([Ca]i) and chemotactic responses to mtFPs were studied. Sequence similarity of mtFPs to the canonical bacterial peptide f-Met-Leu-Phe (fMLF/fMLP) was studied using the BLOcks SUbstitution Matrix 62 (BLOSUM 62) system. The presence of mtFPs in plasma of trauma patients was assayed by Enzyme-linked immunosorbent assay (ELISA). The effects of the most potent mtFP (ND6) on PMN signaling and function were then studied at ambient clinical concentrations by serial exposure of native PMN to ND6, chemokines and leukotrienes. RESULTS: Five mtFPs (ND6, ND3, ND4, ND5, and Cox 1) induced [Ca]i flux and chemotaxis in descending order of potency. Evolutionary similarity to fMLF predicted [Ca]i flux and chemotactic potency linearly (R = 0.97, R = 0.95). Chemoattractant potency was also linearly related to [Ca]i flux induction (R = 0.92). Active mtFPs appear to circulate in significant amounts immediately after trauma and persist through the first week. The most active mtFP, ND6, suppresses responses to physiologic alveolar chemoattractants (CXCL-1, leukotriene B4) as well as to fMLF where CXCL-1 and leukotriene B4 do not suppress N-formyl peptide receptor (FPR)-1 responses to mtFPs. Prior FPR-1 inhibition rescues PMN from heterologous suppression of CXCR-1 and BLT-1 by mtFPs. CONCLUSION: The data suggest mtFPs released by injured tissue may attract PMN to trauma sites while suppressing PMN responses to other chemoattractants. Inhibition of mtFP-FPR1 interactions might increase PMN recruitment to lung bacterial inoculation after trauma. These findings suggest new paradigms for preventing infections after trauma. LEVEL OF EVIDENCE: Therapeutic, Level IV.


Assuntos
Quimiotaxia/efeitos dos fármacos , Neutrófilos/fisiologia , Peptídeos/sangue , Peptídeos/farmacologia , Ferimentos e Lesões/sangue , Cálcio/metabolismo , Células Cultivadas , Quimiocina CXCL1/farmacologia , Biologia Computacional , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Citosol/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Evolução Molecular , Humanos , Leucotrieno B4/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , N-Formilmetionina Leucil-Fenilalanina/química , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Peptídeos/química , Peptídeos/genética , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA