Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(23): 9468-9477, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821490

RESUMO

Leukemia comprises a diverse group of bone marrow tumors marked by cell proliferation. Current diagnosis involves identifying leukemia subtypes through visual assessment of blood and bone marrow smears, a subjective and time-consuming method. Our study introduces the characterization of different leukemia subtypes using a global clustering approach of Raman hyperspectral maps of cells. We analyzed bone marrow samples from 19 patients, each presenting one of nine distinct leukemia subtypes, by conducting high spatial resolution Raman imaging on 319 cells, generating over 1.3 million spectra in total. An automated preprocessing pipeline followed by a single-step global clustering approach performed over the entire data set identified relevant cellular components (cytoplasm, nucleus, carotenoids, myeloperoxidase (MPO), and hemoglobin (HB)) enabling the unsupervised creation of high-quality pseudostained images at the single-cell level. Furthermore, this approach provided a semiquantitative analysis of cellular component distribution, and multivariate analysis of clustering results revealed the potential of Raman imaging in leukemia research, highlighting both advantages and challenges associated with global clustering.


Assuntos
Leucemia , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Leucemia/patologia , Análise por Conglomerados , Peroxidase/metabolismo
2.
Sci Rep ; 14(1): 6791, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514697

RESUMO

Extracellular vesicles (EVs) released from cells attract interest for their possible role in health and diseases. The detection and characterization of EVs is challenging due to the lack of specialized methodologies. Raman spectroscopy, however, has been suggested as a novel approach for biochemical analysis of EVs. To extract information from the spectra, a novel deep learning architecture is explored as a versatile variant of autoencoders. The proposed architecture considers the frequency range separately from the intensity of the spectra. This enables the model to adapt to the frequency range, rather than requiring that all spectra be pre-processed to the same frequency range as it was trained on. It is demonstrated that the proposed architecture accepts Raman spectra of EVs and lipoproteins from 13 biological sources and from two laboratories. High reconstruction accuracy is maintained despite large variances in frequency range and noise level. It is also shown that the architecture is able to cluster the biological nanoparticles by their Raman spectra and differentiate them by their origin without pre-processing of the spectra or supervision during learning. The model performs label-free differentiation, including separating EVs from activated vs. non-activated blood platelets and EVs/lipoproteins from prostate cancer patients versus non-cancer controls. The differentiation is evaluated by creating a neural network classifier that observes the features extracted by the model to classify the spectra according to their sample origin. The classification reveals a test sensitivity of 92.2 % and selectivity of 92.3 % over 769 measurements from two labs that have different measurement configurations.


Assuntos
Vesículas Extracelulares , Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Vesículas Extracelulares/química , Neoplasias da Próstata/diagnóstico , Lipoproteínas , Aprendizado de Máquina Supervisionado , Análise Espectral Raman/métodos
3.
J Extracell Vesicles ; 12(11): e12376, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942918

RESUMO

Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/fisiologia , Imagem Individual de Molécula , Biomarcadores , Linhagem Celular Tumoral , Lipoproteínas LDL
4.
Front Oncol ; 12: 887210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686092

RESUMO

Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.

5.
J Extracell Vesicles ; 9(1): 1730134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158522

RESUMO

Extracellular vesicles (EVs) present in blood originate from cells of different origins such as red blood cells (RBCs), platelets and leukocytes. In patients with cancer, a small portion of EVs originate from tumour cells and their load is associated with poor clinical outcome. Identification of these tumour-derived extracellular vesicles (tdEVs) is difficult as they are outnumbered by EVs of different tissue of origin as well a large number of lipoproteins (LPs) that are in the same size range. In order to detect tdEVs from the abundant presence of other particles, single-particle techniques are necessary. Here, synchronous Rayleigh and Raman scattering is used for that purpose. This combination of light scattering techniques identifies optically trapped single particles based on Rayleigh scattering and distinguishes differences in chemical composition of particle populations based on Raman scattering. Here, we show that tdEVs can be distinguished from RBC EVs and LPs in a label-free manner and directly in suspension.

6.
Nanomedicine ; 24: 102109, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669420

RESUMO

Extracellular Vesicles (EVs) can be used as biomarkers in diseases like cancer, as their lineage of origin and molecular composition depend on the presence of cancer cells. Recognition of tumor-derived EVs (tdEVs) from other particles and EVs in body fluids requires characterization of single EVs to exploit their biomarker potential. We present here a new method based on synchronized Rayleigh and Raman light scattering from a single laser beam, which optically traps single EVs. Rapidly measured sequences of the Rayleigh scattering amplitude show precisely when an individual EV is trapped and the synchronously acquired Raman spectrum labels every time interval with chemical information. Raman spectra of many single EVs can thus be acquired with great fidelity in an automated manner by blocking the laser beam at regular time intervals. This new method enables single EV characterization from fluids at the single particle level.


Assuntos
Vesículas Extracelulares/química , Análise Espectral Raman , Vesículas Extracelulares/metabolismo , Humanos , Células PC-3 , Tamanho da Partícula
7.
Lab Chip ; 19(15): 2526-2536, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31292600

RESUMO

Tumor-derived extracellular vesicles (tdEVs) are promising blood biomarkers for cancer disease management. However, blood is a highly complex fluid that contains multiple objects in the same size range as tdEVs (30 nm-1 µm), which obscures an unimpeded analysis of tdEVs. Here, we report a multi-modal analysis platform for the specific capture of tdEVs on antibody-functionalized stainless steel substrates, followed by their analysis using SEM, Raman spectroscopy and AFM, at the single EV level in terms of size and size distribution, and chemical fingerprint. After covalent attachment of anti-EpCAM (epithelial cell adhesion molecule) antibodies on stainless steel substrates, EV samples derived from a prostate cancer cell line (LnCAP) were flushed into a microfluidic device assembled with this stainless steel substrate for capture. To track the captured objects between the different analytical instruments and subsequent correlative analysis, navigation markers were fabricated onto the substrate from a cyanoacrylate glue. Specific capture of tdEVs on the antibody-functionalized surface was demonstrated using SEM, AFM and Raman imaging, with excellent correlation between the data acquired by the individual techniques. The particle distribution was visualized with SEM. Furthermore, a characteristic lipid-protein band at 2850-2950 cm-1 was observed with Raman spectroscopy, and with AFM the size distribution and surface density of the captured EVs was assessed. Finally, correlation of SEM and Raman images enabled discrimination of tdEVs from cyanoacrylate glue particles, highlighting the capability of this multi-modal analysis platform for distinguishing tdEVs from contamination. The trans-instrumental compatibility of the stainless steel substrate and the possibility to spatially correlate the images of the different modalities with the help of the navigation markers open new avenues to a wide spectrum of combinations of different analytical and imaging techniques for the study of more complex EV samples.


Assuntos
Fracionamento Celular/métodos , Vesículas Extracelulares/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Anticorpos Imobilizados/química , Linhagem Celular Tumoral , Dimetilpolisiloxanos , Humanos , Nylons , Aço Inoxidável/química
8.
Anal Chem ; 90(19): 11290-11296, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30157378

RESUMO

Mammalian cells release extracellular vesicles (EVs) into their microenvironment that travel the entire body along the stream of bodily fluids. EVs contain a wide range of biomolecules. The transported cargo varies depending on the EV origin. Knowledge of the origin and chemical composition of EVs can potentially be used as a biomarker to detect, stage, and monitor diseases. In this paper, we demonstrate the potential of EVs as a prostate cancer biomarker. A Raman optical tweezer was employed to obtain Raman signatures from four types of EV samples, which were red blood cell- and platelet-derived EVs of healthy donors and the prostate cancer cell lines- (PC3 and LNCaP) derived EVs. EVs' Raman spectra could be clearly separated/classified into distinct groups using principal component analysis (PCA) which permits the discrimination of the investigated EV subtypes. These findings may provide new methodology to detect and monitor early stage cancer.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Análise Espectral Raman/métodos , Plaquetas/patologia , Eritrócitos/patologia , Humanos , Masculino
9.
J Biomed Opt ; 20(8): 86006, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26271052

RESUMO

Fluorescent labels are well suited as tracers for cancer drug monitoring. Identifying cellular target regions of these drugs with a high resolution is important to assess the working principle of a drug. We investigate the applications of label-free nonresonant four-wave mixing (NR-FWM) microscopy in biological imaging in combination with fluorescence imaging of fluorescently labeled cancer drugs. Results from human A431 tumor cells with stained nuclei and incubated with IRdye 800CW labeled cancer drug cetuximab targeting epidermal growth factor receptor at the cell membrane show that NR-FWM is well suited for cellular imaging. A comparison of vibrationally nonresonant FWM imaging with vibrational resonant coherent anti-Stokes Raman scattering signals revealed nearly identical qualitative information in cellular imaging. NR-FWM is also suitable for tumor tissue imaging in combination with fluorescence imaging of IRdye 800CW labeled, human epidermal growth factor 2 targeting cancer drug pertuzumab and provides additional information over transmission microscopy.


Assuntos
Cetuximab/uso terapêutico , Receptores ErbB/metabolismo , Corantes Fluorescentes/química , Imagem Molecular/métodos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cetuximab/metabolismo , Monitoramento de Medicamentos/métodos , Humanos , Microscopia de Fluorescência por Excitação Multifotônica , Neoplasias Experimentais/tratamento farmacológico , Coloração e Rotulagem/métodos
10.
Food Chem ; 152: 378-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444951

RESUMO

Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during storage was lower in mixed mayonnaise compared to LSO mayonnaise, while in mixed oil mayonnaise the level of peroxides was constantly low. Mixed oil mayonnaise had a lower rate of oxygen consumption than mixed mayonnaise, LSO mayonnaise having the highest rate. The decay of water-soluble nitroxyl radicals showed radicals are formed in the aqueous phase with the same rate independent of the lipids. This was also reflected in decay of α-tocopherol during storage being similar in MCT and LSO mayonnaises, but being stable in mixed oil mayonnaise and mixed mayonnaise. Results suggest that other effects than simply diluting unsaturated triglycerides with saturated triglycerides is causing the oxidative stabilization observed for mixed mayonnaise and mixed oil mayonnaise.


Assuntos
Gorduras na Dieta/análise , Óleo de Semente do Linho/química , Triglicerídeos/química , Armazenamento de Alimentos , Estrutura Molecular , Oxirredução
11.
PLoS One ; 8(10): e78148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167603

RESUMO

Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm(-1) band assigned to disulfide bridges in insulin, and the 1552 cm(-1) band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans.


Assuntos
Glucagon/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Análise Espectral Raman/métodos , Animais , Linhagem Celular Tumoral , Glucagon/análise , Humanos , Insulina/análise , Ilhotas Pancreáticas/citologia , Camundongos , Ratos
12.
Biomaterials ; 33(11): 3164-74, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22265787

RESUMO

Small cartilage defects are frequently treated with debridement or left untreated, predisposing to early onset osteoarthritis. We propose to fill these defects with a cell-free injectable hydrogel comprising dextran-tyramine conjugates (Dex-TA) that can be applied during arthroscopic procedures. In this study, we report on the adhesion mechanism between cartilage and Dex-TA hydrogels and enhancement of cell ingrowth by incorporation of Heparin-tyramine (Hep-TA) conjugates. The enzyme-catalyzed crosslinking reaction of Dex-TA and Hep-TA hydrogels is based on covalent bonding of hydroxyphenyl residues. We hypothesized that this reaction results in covalent bonding of the hydroxyphenyl residues in Dex-TA and Hep-TA to tyrosine residues in cartilage matrix proteins. The involvement of TA residues was confirmed by modelling the enzymatic reaction occurring during gelation. The mechanical analysis indicated that higher tyramine content led to stronger binding. Interfacial cartilage-hydrogel morphology and Raman spectroscopy demonstrated collagens' reorganization and evidenced the coupling of TA to tyrosine residues in collagen. Moreover, the addition of Hep-TA induced cell recruitment. Collectively, in vitro and ex vivo functional studies evidenced the covalent bonding of TA-containing hydrogels to tyrosine residues in cartilaginous matrix proteins. Moreover, the cell-attracting ability of these hydrogels could be explored to guide tissue repair in focal cartilage defects, preventing or delaying the onset osteoarthritis.


Assuntos
Artroscopia/métodos , Condrócitos/citologia , Condrócitos/fisiologia , Dextranos/uso terapêutico , Fraturas de Cartilagem/terapia , Hidrogéis/uso terapêutico , Tiramina/uso terapêutico , Adesividade , Animais , Bovinos , Adesão Celular , Células Cultivadas , Dextranos/química , Fraturas de Cartilagem/patologia , Hidrogéis/química , Teste de Materiais , Resultado do Tratamento , Tiramina/química
13.
Analyst ; 135(12): 3220-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20978707

RESUMO

The Her2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast carcinomas. The roles of Her2/neu have been reported before in literature, showing different relations to intracellular lipid composition. Here, we use Raman microspectroscopic imaging to reveal the chemical composition of single live cells from breast carcinoma cell lines MDA-MB-231, MDA-MB-435s and SK-BR-3, which express Her2/neu receptor in different extent. Average Raman spectra of the different cell populations show prominent lipid presence in all cell lines. With high significance, Raman difference spectra reveal increased lipid contents, as well as a lower degree of fatty acid saturation in the MDA-MB cell lines with respect to the SK-BR-3 cells. These results are confirmed by hierarchical cluster analysis of single cells. High internal consistency of the chemical compositions in the cell lines is shown by hierarchical cluster analysis on a single matrix composed of the data of different cells from a single cell line. Although Her2/neu expression is highest for SK-BR-3 cells, their lipid contents are lower than that of the MDA-MB cell lines, which express less to no Her2/neu receptors. Rather than metabolic rate or senescence, the degree of metastaticity of the cells appears to be related to the polyunsaturated fatty acid contents of the cells.


Assuntos
Neoplasias da Mama/química , Neoplasias da Mama/patologia , Microscopia/métodos , Receptor ErbB-2/análise , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Análise por Conglomerados , Ácidos Graxos/análise , Feminino , Humanos , Metástase Neoplásica , Proto-Oncogene Mas
14.
J Control Release ; 146(3): 400-8, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20561894

RESUMO

PNIPAAm-containing polymersomes (N/Ps) were prepared by injecting a solution of poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-PDLLA) and poly(N-isopropylacrylamide) (PNIPAAm) in THF into water to incorporate PNIPAAm into polymersomes (Ps). At 37 degrees C, hydrogel-containing Ps (Hs, hydrosomes) with an average diameter of 127 nm as measured with dynamic light scattering (DLS) were obtained which may be used as potential novel carriers for anticancer drugs and proteins. Dual-labeled N/Ps (FITC-N/RB-Ps) were prepared analogously using rhodamine B tagged mPEG-PDLLA (mPEG-PDLLA-RB) and fluorescein isothiocyanate labeled PNIPAAm (FITC-N). The co-localization of RB labeled Ps (RB-Ps) and FITC-N in RB-Ps was shown by dual fluorescence CLSM. Fluorescence correlation spectroscopy (FCS) and fluorescence anisotropy (FA) measurements with these systems gave further evidence for the colocalization of PNIPAAm and Ps. Micron-sized giant Ps with a diameter of 5-10 microm containing FITC-N were prepared using CHCl(3) as the organic phase. The presence of FITC-N in these giant Ps as well as the phase separation of the internal FITC-N solution above the lower critical solution temperature (LCST) was also shown by CLSM. The release of fluorescein isothiocyanate tagged dextran (FD, FITC-dextran, Mw 4000 g/mol) from Hs revealed that in the presence of the hydrogel at 37 degrees C a more sustained release of FD (up to 30 days) with a low initial burst effect was obtained as compared to the release from bare Ps.


Assuntos
Acrilamidas/química , Preparações de Ação Retardada/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Resinas Acrílicas , Dextranos/administração & dosagem , Lactatos/química , Transição de Fase , Polietilenoglicóis/química , Temperatura
15.
Nanotechnology ; 21(14): 145101, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20220222

RESUMO

We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.


Assuntos
Ouro/química , Nanotubos/química , Nanotubos/toxicidade , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Ouro/toxicidade , Humanos , Modelos Químicos , Nanotubos/ultraestrutura , Polímeros/toxicidade , Propriedades de Superfície/efeitos dos fármacos
16.
Int J Nanomedicine ; 2(2): 241-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17722552

RESUMO

Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering.


Assuntos
Dextranos/farmacocinética , Macrófagos/citologia , Macrófagos/metabolismo , Fagocitose/fisiologia , Poliésteres/farmacocinética , Polietilenoglicóis/farmacocinética , Análise Espectral Raman/métodos , Animais , Linhagem Celular , Hidrogéis/farmacocinética , Camundongos , Microesferas
17.
J Gerontol A Biol Sci Med Sci ; 62(1): 34-40, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17301035

RESUMO

Although it has been established that premature aging trichothiodystrophy (TTD) mice display typical signs of osteoporosis, exact changes in physicochemical properties of these mice have not been elucidated. We used confocal Raman microscopy and histology to study femora of TTD mice. We measured femora isolated from xeroderma pigmentosum group A (XPA)/TTD double mutant mice to establish that Raman microscopy can be applied to measure differences in bone composition. Raman data from XPA/TTD mice showed remarkable changes in bone mineral composition. Moreover, we observed a severe form of osteoporosis, with strongly reduced cortical bone thickness. We used Raman microscopy to analyze bone composition in eight wild-type and eight TTD animals, and observed decreased levels of phosphate and carbonate in the cortex of femora isolated from TTD mice. In contrast, the bands representing the bone protein matrix were not affected in these mice.


Assuntos
Senilidade Prematura , Carbonatos/análise , Colágeno/análise , Fêmur/química , Doenças do Cabelo/metabolismo , Osteoporose , Fosfatos/análise , Senilidade Prematura/etiologia , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Animais , Densidade Óssea , Matriz Óssea/química , Modelos Animais de Doenças , Fêmur/patologia , Cabelo/anormalidades , Doenças do Cabelo/complicações , Doenças do Cabelo/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Osteoporose/complicações , Osteoporose/metabolismo , Osteoporose/patologia , Análise Espectral Raman , Xeroderma Pigmentoso/complicações , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia
18.
Free Radic Biol Med ; 40(3): 407-19, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16443155

RESUMO

Reactive oxygen species generated by photosensitizers are efficacious remedy for tumor eradication. Eleven cycloimide derivatives of bacteriochlorin p (CIBCs) with different N-substituents at the fused imide ring and various substituents replacing the 3-acetyl group were evaluated as photosensitizers with special emphasis on structure-activity relationships. The studied CIBCs absorb light within a tissue transparency window (780-830 nm) and possess high photostability at prolonged light irradiation. The most active derivatives are 300-fold more phototoxic toward HeLa and A549 cells than the clinically used photosensitizer Photogem due to the substituents that improve intracellular accumulation (distribution ratio of 8-13) and provide efficient photoinduced singlet oxygen generation (quantum yields of 0.54-0.57). The substituents predefine selective CIBC targeting to lipid droplets, Golgi apparatus, and lysosomes or provide mixed lipid droplets and Golgi apparatus localization in cancer cells. Lipid droplets and Golgi apparatus are critically sensitive to photoinduced damage. The average lethal dose of CIBC-generated singlet oxygen per volume unit of cell was estimated to be 0.22 mM. Confocal fluorescence analysis of tissue sections of tumor-bearing mice revealed the features of tissue distribution of selected CIBCs and, in particular, their ability to accumulate in tumor nodules and surrounding connective tissues. Considering the short-range action of singlet oxygen, these properties of CIBCs are prerequisite to efficient antitumor photodynamic therapy.


Assuntos
Leucemia P388 , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/farmacocinética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Feminino , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Humanos , Dose Letal Mediana , Leucemia P388/tratamento farmacológico , Leucemia P388/metabolismo , Leucemia P388/patologia , Lipídeos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Oxigênio Singlete/metabolismo , Distribuição Tecidual
19.
J Am Chem Soc ; 126(41): 13226-7, 2004 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-15479068

RESUMO

Understanding the degradation behavior of polymeric microspheres is crucial for the successful application of such devices in controlled drug delivery. The degradation mechanism of poly(lactic-co-glycolic acid) (PLGA) microspheres inside phagocytic cells is not known, but different models for degradation in aqueous solution have been proposed. We have used confocal Raman spectroscopy and imaging to study the intracellular degradation of PLGA microspheres inside individual macrophages. Our results show that ingested microspheres degrade in a heterogeneous manner, with a more rapid degradation in the center. Comparison of Raman spectra from degrading beads with those of uningested beads reveals that ester hydrolysis occurs throughout the phagocytosed microspheres, with a selective loss of glycolic acid units. Furthermore, we show that PLGA degradation is a cell-mediated process, possibly caused by the low pH of the phagosome and/or the presence of hydrolytic enzymes. In conclusion, we have demonstrated that the chemical composition of degrading polymers inside cells can be probed by Raman spectral imaging. This technique will expand the capabilities of investigating biomaterial degradation in vivo.


Assuntos
Materiais Biocompatíveis/farmacocinética , Glicolatos/farmacocinética , Macrófagos/metabolismo , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Glicolatos/química , Humanos , Ácido Láctico , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microesferas , Fagocitose , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Análise Espectral Raman
20.
J Biol Chem ; 279(20): 21327-33, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-14993213

RESUMO

Previous electron microscopic studies of bacterial RCLH1 complexes demonstrated both circular and elliptical conformations of the LH1 ring, and this implied flexibility has been suggested to allow passage of quinol from the Q(B) site of the RC to the quinone pool prior to reduction of the cytochrome bc(1) complex. We have used atomic force microscopy to demonstrate that these are just two of many conformations for the LH1 ring, which displays large molecule-to-molecule variations, in terms of both shape and size. This atomic force microscope study has used a mutant lacking the reaction center complex, which normally sits within the LH1 ring providing a barrier to substantial changes in shape. This approach has revealed the inherent flexibility and lack of structural coherence of this complex in a reconstituted lipid bilayer at room temperature. Circular, elliptical, and even polygonal ring shapes as well as arcs and open rings have been observed for LH1; in contrast, no such variations in structure were observed for the LH2 complex under the same conditions. The basis for these differences between LH1 and LH2 is suggested to be the H-bonding patterns that stabilize binding of the bacteriochlorophylls to the LH polypeptides. The existence of open rings and arcs provides a direct visualization of the consequences of the relatively weak associations that govern the aggregation of the protomers (alpha(1)beta(1)Bchl(2)) comprising the LH1 complex. The demonstration that the linkage between adjacent protomer units is flexible and can even be uncoupled at room temperature in a detergent-free membrane bilayer provides a rationale for the dynamic separation of individual protomers, and we may now envisage experiments that seek to prove this active opening process.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Complexos de Proteínas Captadores de Luz/metabolismo , Microscopia de Força Atômica/métodos , Modelos Moleculares , Conformação Proteica , Rhodospirillum rubrum/metabolismo , Rhodospirillum rubrum/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA