Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 13(5): 17, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776109

RESUMO

Purpose: This study aimed to develop artificial intelligence models for predicting postoperative functional outcomes in patients with rhegmatogenous retinal detachment (RRD). Methods: A retrospective review and data extraction were conducted on 184 patients diagnosed with RRD who underwent pars plana vitrectomy (PPV) and gas tamponade. The primary outcome was the best-corrected visual acuity (BCVA) at three months after the surgery. Those with a BCVA of less than 6/18 Snellen acuity were classified into a vision impairment group. A deep learning model was developed using presurgical predictors, including ultra-widefield fundus images, structural optical coherence tomography (OCT) images of the macular region, age, gender, and preoperative BCVA. A fusion method was used to capture the interaction between different modalities during model construction. Results: Among the participants, 74 (40%) still had vision impairment after the treatment. There were significant differences in age, gender, presurgical BCVA, intraocular pressure, macular detachment, and extension of retinal detachment between the vision impairment and vision non-impairment groups. The multimodal fusion model achieved a mean area under the curve (AUC) of 0.91, with a mean accuracy of 0.86, sensitivity of 0.94, and specificity of 0.80. Heatmaps revealed that the macular involvement was the most active area, as observed in both the OCT and ultra-widefield images. Conclusions: This pilot study demonstrates that artificial intelligence techniques can achieve a high AUC for predicting functional outcomes after RRD surgery, even with a small sample size. Machine learning methods identified The macular region as the most active region. Translational Relevance: Multimodal fusion models have the potential to assist clinicians in predicting postoperative visual outcomes prior to undergoing PPV.


Assuntos
Inteligência Artificial , Descolamento Retiniano , Tomografia de Coerência Óptica , Acuidade Visual , Vitrectomia , Humanos , Descolamento Retiniano/cirurgia , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Acuidade Visual/fisiologia , Vitrectomia/métodos , Tomografia de Coerência Óptica/métodos , Idoso , Adulto , Tamponamento Interno , Resultado do Tratamento , Aprendizado Profundo
2.
Int J Comput Assist Radiol Surg ; 19(6): 1175-1183, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619792

RESUMO

PURPOSE: The internal carotid artery (ICA) is a region with a high incidence for small- and medium-sized saccular aneurysms. However, the treatment relies heavily on the surgeon's experience to achieve optimal outcome. Although the finite element method (FEM) and computational fluid dynamics can predict the postoperative outcomes, due to the computational complexity of traditional methods, there is an urgent need for investigating the fast but versatile approaches related to numerical simulations of flow diverters (FDs) deployment coupled with the hemodynamic analysis to determine the treatment plan. METHODS: We collected the preoperative and postoperative data from 34 patients (29 females, 5 males; mean age 55.74 ± 9.98 years) who were treated with a single flow diverter for small- to medium-sized intracranial saccular aneurysms on the ICA. The constraint-based virtual deployment (CVD) method is proposed to simulate the FDs expanding outward along the vessel centerline while be constrained by the inner wall of the vessel. RESULTS: The results indicate that there were no significant differences in the reduction rates of wall shear stress and aneurysms neck velocity between the FEM and methods. However, the solution time of CVD was greatly reduced by 98%. CONCLUSION: In the typical location of small- and medium-sized saccular aneurysms, namely the ICA, our virtual FDs deployment simulation effectively balances the computational accuracy and efficiency. Combined with hemodynamics analysis, our method can accurately represent the blood flow changes within the lesion region to assist surgeons in clinical decision-making.


Assuntos
Artéria Carótida Interna , Aneurisma Intracraniano , Humanos , Feminino , Aneurisma Intracraniano/cirurgia , Aneurisma Intracraniano/terapia , Masculino , Pessoa de Meia-Idade , Artéria Carótida Interna/cirurgia , Artéria Carótida Interna/fisiopatologia , Resultado do Tratamento , Hemodinâmica/fisiologia , Idoso , Análise de Elementos Finitos , Simulação por Computador , Stents , Angiografia Cerebral
3.
J Neurointerv Surg ; 15(7): 695-700, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35688619

RESUMO

BACKGROUND: Specifying generic flow boundary conditions in aneurysm hemodynamic simulations yields a great degree of uncertainty for the evaluation of aneurysm rupture risk. Herein, we proposed the use of flowrate-independent parameters in discriminating unstable aneurysms and compared their prognostic performance against that of conventional absolute parameters. METHODS: This retrospective study included 186 aneurysms collected from three international centers, with the stable aneurysms having a minimum follow-up period of 24 months. The flowrate-independent aneurysmal wall shear stress (WSS) and energy loss (EL) were defined as the coefficients of the second-order polynomials characterizing the relationships between the respective parameters and the parent-artery flows. Performance of the flowrate-independent parameters in discriminating unstable aneurysms with the logistic regression, Adaboost, and support-vector machine (SVM) methods was quantified and compared against that of the conventional parameters, in terms of sensitivity, specificity, and area under the curve (AUC). RESULTS: In discriminating unstable aneurysms, the proposed flowrate-independent EL achieved the highest sensitivity (0.833, 95% CI 0.586 to 0.964) and specificity (0.833, 95% CI 0.672 to 0.936) on the SVM, with the AUC outperforming the conventional EL by 0.133 (95% CI 0.039 to 0.226, p=0.006). Likewise, the flowrate-independent WSS outperformed the conventional WSS in terms of the AUC (difference: 0.137, 95% CI 0.033 to 0.241, p=0.010). CONCLUSION: The flowrate-independent hemodynamic parameters surpassed their conventional counterparts in predicting the stability of aneurysms, which may serve as a promising set of hemodynamic metrics to be used for the prediction of aneurysm rupture risk when physiologically real vascular boundary conditions are unavailable.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Projetos Piloto , Estudos Retrospectivos , Hidrodinâmica , Hemodinâmica/fisiologia , Aneurisma Roto/diagnóstico
4.
Front Surg ; 9: 1029991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268206

RESUMO

Introduction: Skin cancer is one of the most common types of cancer. An accessible tool to the public can help screening for malign lesion. We aimed to develop a deep learning model to classify skin lesion using clinical images and meta information collected from smartphones. Methods: A deep neural network was developed with two encoders for extracting information from image data and metadata. A multimodal fusion module with intra-modality self-attention and inter-modality cross-attention was proposed to effectively combine image features and meta features. The model was trained on tested on a public dataset and compared with other state-of-the-art methods using five-fold cross-validation. Results: Including metadata is shown to significantly improve a model's performance. Our model outperformed other metadata fusion methods in terms of accuracy, balanced accuracy and area under the receiver-operating characteristic curve, with an averaged value of 0.768±0.022, 0.775±0.022 and 0.947±0.007. Conclusion: A deep learning model using smartphone collected images and metadata for skin lesion diagnosis was successfully developed. The proposed model showed promising performance and could be a potential tool for skin cancer screening.

5.
Int J Comput Assist Radiol Surg ; 15(4): 715-723, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32056126

RESUMO

PURPOSE: Cerebrovascular aneurysms are being observed with rapidly increasing incidence. Therefore, tools are needed for accurate and efficient detection of aneurysms. We used deep learning techniques with CT angiography acquired from multiple medical centers and different machines to develop and evaluate an automatic detection model. METHODS: In this study, we have introduced a deep learning model, the faster RCNN model, in order to develop a tool for automatic detection of aneurysms from medical images. The inputs of the model were 2D nearby projection (NP) images from 3D CTA, which were made by the NP method proposed in this study. This method made aneurysms clearly visible on images and improved the model's performance. The study included 311 patients with 352 aneurysms, selected from three hospitals, and 208 and 103 of these patients, respectively, were randomly selected to train and test the models. RESULTS: The sensitivity of the trained model was 91.8%. For aneurysm sizes larger than 3 mm, the sensitivity of successful aneurysm detection was 96.7%. We achieved state-of-the-art sensitivity for > 3 mm aneurysms. The sensitivities also indicated that there was no significant difference among aneurysms at different locations in the body. Computing time for the detection process was less than 25 s per case. CONCLUSIONS: We successfully developed a deep learning model that can automatically detect aneurysms. The model performed well for aneurysms of different sizes or in different locations. This finding indicates that the deep learning model has the potential to vastly improve clinician performance by providing automated aneurysm detection.


Assuntos
Angiografia Cerebral/métodos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Bases de Dados Factuais , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA