Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Chemosphere ; 177: 65-76, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28284117

RESUMO

Organochlorine pesticides (OCPs) in sediment were a potential damage for humans and ecosystems. The aim of this work was to determine the effectiveness of carbon materials remedy hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethanes (DDTs) in sediment. Two different carbon materials including activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs) were used in the present research. Sediment treated with 2 wt% AC and MWCNTs after 150 d contact showed 97%, and 75% reduction for HCH, and 93% and 59% decrease for DDTs in aqueous equilibrium concentration, respectively. Similarly, the reduction efficiencies of DDT and HCH uptake by semipermeable membrane devices (SPMDs) treated with AC (MWCNTs) were 97% (75%) and 92% (63%), respectively under the identical conditions. Furthermore, for 2 wt% AC (MWCNTs) system, a reduction of XAD beads uptake up to 87% (52%) and 73% (67%) was obtained in HCH and DDT flux to overlying water in quiescent system. Adding MWCNTs to contaminated sediment did not significantly decrease aqueous equilibrium concentration and DDTs and HCH availability in SPMDs compared to AC treatment. A series of results indicated that AC had significantly higher remediation efficiency towards HCH and DDTs in sediment than MWCNTs. Additionally, the removal efficiencies of two organic pollutants improved with increasing material doses and contact times. The greater effectiveness of AC was attributed to its greater specific surface area, which was favorable for binding contaminants. These results highlighted the potential for using AC as in-situ sorbent amendments for sediment remediation.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Clorados/análise , Nanotubos de Carbono/química , Poluentes Químicos da Água/análise , Adsorção , China , DDT/análise , Geografia , Sedimentos Geológicos/química , Hexaclorocicloexano/análise , Lagos/química , Praguicidas/análise , Solubilidade , Água/química
2.
Alcohol Clin Exp Res ; 40(11): 2320-2328, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27647657

RESUMO

BACKGROUND: Ethanol (EtOH) neurotoxicity can result in devastating effects on brain and behavior by disrupting homeostatic signaling cascades and inducing cell death. One such mechanism involves double-stranded RNA activated protein kinase (PKR), a primary regulator of protein translation and cell viability in the presence of a virus or other external stimuli. EtOH-mediated up-regulation of interferon-gamma (IFN-γ; the oxidative stress-inducible regulator of PKR), PKR, and its target, p53, are still being fully elucidated. METHODS: Using Western blot analysis, immunofluorescence, and linear regression analyses, changes in the IFN-γ-PKR-p53 pathway following chronic EtOH treatment in the frontal cortex of rodents were examined. The role of PKR on cell viability was also assessed in EtOH-treated cells using PKR overexpression vector and PKR inhibitor (PKRI). RESULTS: In rats chronically fed EtOH, PKR, phosphorylated PKR (p-PKR), IFN-γ, and p53 were significantly increased following chronic EtOH exposure. Linear regression revealed a significant correlation between IFN-γ and p-PKR protein levels, as well as p-PKR expression and age of EtOH exposure. Overexpression of PKR resulted in greater cell death, while use of PKRI enhanced cell viability in EtOH-treated cells. CONCLUSIONS: Chronic EtOH exposure activates the IFN-γ-PKR-p53 pathway in the frontal cortex of rodents. p-PKR expression is greater in brains of rodents exposed to EtOH at earlier ages compared to later life, suggesting a mechanism by which young brains could be more susceptible to EtOH-related brain injury. PKR and p-PKR were also colocalized in neurons and astrocytes of rats. This study provides additional insight into biochemical mechanisms underlying alcohol use disorder related neuropathology and warrants further investigation of PKR as a potential pharmacotherapeutic target to combat EtOH-related neurotoxicity, loss of protein translation and brain injury.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Interferon gama/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , eIF-2 Quinase/metabolismo , Idade de Início , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Córtex Pré-Frontal/metabolismo , Distribuição Aleatória , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
J Neurosci ; 32(48): 17120-7, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23197705

RESUMO

Monoamine oxidase-A (MAO-A), a key brain enzyme which metabolizes monoamines, is implicated in the pathophysiology of stress-related illnesses, including major depressive disorder, addiction, and violent behavior. Chronic stressors and glucocorticoid-administration typically associate with elevated MAO-A levels/activity. However, the relationship of shorter stress or glucocorticoid exposures and MAO-A levels/activity is not well established. Our objectives are to assess effects of acute stress upon MAO-A V(T,) an index of MAO-A density, in human brain and acute glucocorticoid exposure upon MAO-A levels in human neuronal and glial cell lines. Twelve healthy, non-smoking participants aged 18-50 underwent [(11)C]harmine positron emission tomography to measure brain MAO-A V(T) on two different days: One under acute psychosocial stress (via Trier Social Stress and Montreal Imaging Stress Tasks) and one under a non-stress condition. MAO-A density (by Western blot) and activity (by [(14)C]-5-HT metabolism and liquid scintillation spectroscopy) were measured in human neuronal and glial cell lines after 4 h exposure to dexamethasone. We observed a significant reduction in whole-brain MAO-A binding as reflected by reductions in 10 of 11 brain regions. Acute dexamethasone exposure in neuronal and glial cells significantly decreased MAO-A activity and protein levels. We observed a highly consistent relationship between acute stressors and glucocorticoid administration and decreased MAO-A binding, activity and protein levels. Since MAO-A metabolizes monoamines, this phenomenon may explain why acute stressors benefit healthy animals even though chronic stress is associated with illness.


Assuntos
Encéfalo/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Monoaminoxidase/metabolismo , Estresse Psicológico/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Hidrocortisona/sangue , Masculino , Pessoa de Meia-Idade , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cintilografia , Estresse Psicológico/diagnóstico por imagem
4.
J Biol Chem ; 287(29): 24195-206, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22628545

RESUMO

Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Monoaminoxidase/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Imunoprecipitação da Cromatina , Cromatografia Líquida de Alta Pressão , Corticosterona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dexametasona/metabolismo , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , Monoaminoxidase/genética , Radioimunoensaio , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Serotonina/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS One ; 7(3): e33493, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428062

RESUMO

The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) ß variant, ERß2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERß2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERß2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERß2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERß2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERß2 in circulating white blood cells and brain cells suggests that ERß2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain.


Assuntos
Estradiol/farmacologia , Receptor beta de Estrogênio/metabolismo , Terapia de Reposição de Estrogênios/métodos , Ovariectomia/efeitos adversos , Isoformas de Proteínas/metabolismo , Análise de Variância , Animais , Western Blotting , Receptor beta de Estrogênio/genética , Feminino , Citometria de Fluxo , Hipocampo/citologia , Hipocampo/metabolismo , Leucócitos/metabolismo , Atividade Motora/efeitos dos fármacos , Isoformas de Proteínas/genética , Ratos , Ratos Sprague-Dawley
6.
Mol Pharmacol ; 79(2): 308-17, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20980443

RESUMO

Glucocorticoid steroid hormones play important roles in many neurophysiological processes such as responses to stress, behavioral adaption, and mood. One mechanism by which glucocorticoids exert functions in the brain is via the modulation of neurotransmission systems. Glucocorticoids are capable of inducing the activities of monoamine oxidases (MAOs), which degrade monoamine neurotransmitters including serotonin, norepinephrine, phenylethylamine, and dopamine. However, the molecular mechanisms for such induction are not yet fully understood. Here, we report that dexamethasone, a synthetic glucocorticoid hormone, stimulates MAO B (an isoform of MAOs) promoter and catalytic activities via both the fourth glucocorticoid response element (GRE) and simian virus 40 promoter factor 1 (Sp1) binding sites in MAO B promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation analysis demonstrated that glucocorticoid receptor binds to the fourth GRE in vitro and in vivo. Using Sp1-binding motifs as bait in a yeast one-hybrid system, we identified two novel transcriptional repressors of MAO B, E2F-associated phosphoprotein (EAPP) and R1 (RAM2/CDCA7L/JPO2), that down-regulate MAO B via MAO B core promoter, which contains Sp1 sites. EMSA suggested that EAPP and R1 competed with Sp1 for binding to the Sp1 site in vitro. Moreover, EAPP and R1 reduced Sp1-activated glucocorticoid activation of MAO B promoter. In response to dexamethasone, lower occupancy by EAPP and R1 and higher occupancy by Sp1 were shown at the natural MAO B core promoter. Together, this study uncovers for the first time the molecular mechanisms for glucocorticoid activation of MAO B gene and provides new insights into the hormonal regulation of MAO.


Assuntos
Dexametasona/farmacologia , Fatores de Transcrição E2F/metabolismo , Monoaminoxidase/metabolismo , Fosfoproteínas/metabolismo , Fator de Transcrição Sp1/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA , Ativação Enzimática , Humanos , Monoaminoxidase/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
7.
Front Neurosci ; 4: 180, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21103012

RESUMO

Stress detrimentally affects the brain and body and can lead to or be accompanied by depression. Although stress and depression may contribute to each other, the exact molecular mechanism underlying the effects is unclear. However, there is a correlation between stress and an increase in glucocorticoid secretion which causes a subsequent increase in monoamine oxidase (MAO) activity during stress. Consequently, MAO inhibitors have been used as traditional antidepressant drugs. Cellular treatment with the synthetic glucocorticoid, dexamethasone (a cellular stressor), has been reported to markedly increase both MAO A and MAO B catalytic activities, as well as apoptosis. This study compares the neuroprotective abilities of M30 (a new generation inhibitor of both MAO A and MAO B) with rasagiline (Azilect(®), another new MAO B inhibitor) and selegiline (Deprenyl(®), a traditional MAO B inhibitor) in the prevention of dexamethasone-induced brain cell death and MAO activity in human neuroblastoma cells, SH-SY5Y. M30 demonstrated the highest inhibitory effect on MAO A; however, M30 showed the lowest inhibitory effect on MAO B enzymatic activity in comparison to rasagiline and selegiline. Although, M30 exhibited the greatest neuroprotective effect by decreasing cell death rates and apoptotic DNA damage compared to rasagiline and selegiline, these neuroprotective effects of M30 were, overall, similar to rasagiline. Summarily, M30 has a generally greater impact on neuroprotection than the MAO B inhibitors, selegiline and rasagiline. Our results suggest that M30 may have great potential in alleviating disorders involving increases in both MAO A and MAO B, such as stress-induced disorders.

8.
Biol Psychiatry ; 67(9): 855-63, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20022592

RESUMO

BACKGROUND: Alcoholism is a major psychiatric condition at least partly associated with ethanol (EtOH)-induced cell damage. Although brain cell loss has been reported in subjects with alcoholism, the molecular mechanism is unclear. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monoamine oxidase B (MAO B) reportedly play a role in cellular dysfunction under stressful conditions and might contribute to EtOH-induced cell damage. METHODS: Expression of GAPDH and MAO B protein was studied in human glioblastoma and neuroblastoma cell lines exposed to physiological concentrations of EtOH. Expression of these proteins was also examined in the prefrontal cortex from human subjects with alcohol dependence and in rats fed with an EtOH diet. Coimmunoprecipitation, subcellular fractionation, and luciferase assay were used to address nuclear GAPDH-mediated MAO B activation. To test the effects of inactivation, RNA interference and pharmacological intervention were used, and cell damage was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) and hydrogen peroxide measurements. RESULTS: Ethanol significantly increases levels of GAPDH, especially nuclear GAPDH, and MAO B in neuronal cells as well as in human and rat brains. Nuclear GAPDH interacts with the transcriptional activator, transforming growth factor-beta-inducible early gene 2 (TIEG2), and augments TIEG2-mediated MAO B transactivation, which results in cell damage in neuronal cells exposed to EtOH. Knockdown expression of GAPDH or treatment with MAO B inhibitors selegiline (deprenyl) and rasagiline (Azilect) can block this cascade. CONCLUSIONS: Ethanol-elicited nuclear GAPDH augments TIEG2-mediated MAO B, which might play a role in brain damage in subjects with alcoholism. Compounds that block this cascade are potential candidates for therapeutic strategies.


Assuntos
Alcoolismo/patologia , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Monoaminoxidase/metabolismo , Análise de Variância , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Glioblastoma , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Imunoprecipitação/métodos , Marcação In Situ das Extremidades Cortadas/métodos , Masculino , Monoaminoxidase/genética , Inibidores da Monoaminoxidase/farmacologia , Neuroblastoma , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas Repressoras/metabolismo , Selegilina/farmacologia , Transfecção/métodos
9.
Neurotox Res ; 16(2): 148-59, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19526291

RESUMO

The inhibitors of monoamine oxidase B (MAO B) are effectively used as therapeutic drugs for neuropsychiatric and neurodegenerative diseases. However, their mechanism of action is not clear, since the neuroprotective effect of MAO B inhibitors is associated with the blockage of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-death cascade, rather than the inhibition of MAO B. Here, we provide evidence that GAPDH potentiates the ethanol-induced activity of MAO B and brain cell toxicity. The levels of nuclear GAPDH and MAO B activity are significantly increased in brain-derived cell lines upon 75 mM ethanol-induced cell death. Over-expression of GAPDH in cells enhances ethanol-induced cell death, and also increases the ethanol-induced activation of MAO B. In contrast, the MAO B inhibitors rasagiline and selegiline (0.25 nM) and the rasagiline metabolite, 1-R-aminoindan (1 muM) decreases the ethanol-induced MAO B, prevents nuclear translocation of GAPDH and reduces cell death. In addition, GAPDH interacts with transforming growth factor-beta-inducible early gene (TIEG2), a transcriptional activator for MAO B, and this interaction is increased in the nucleus by ethanol but reduced by MAO B inhibitors and 1-R-aminoindan. Furthermore, silencing TIEG2 using RNAi significantly reduces GAPDH-induced MAO B upregulation and neurotoxicity. In summary, ethanol-induced cell death, attenuated by MAO B inhibitors, may result from disrupting the movement of GAPDH with the transcriptional activator into the nucleus and secondly inhibit MAO B gene expression. Thus, the neuroprotective effects of rasagiline or 1-R-aminoindan on ethanol-induced cell death mediated by a novel GAPDH-MAO B pathway may provide a new insight in the treatment of neurobiological diseases including alcohol-use disorders.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Indanos/farmacologia , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Análise de Variância , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Imunoprecipitação/métodos , Monoaminoxidase/genética , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/genética
10.
Neurotox Res ; 15(3): 284-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19384601

RESUMO

Stress can affect the brain and lead to depression; however, the molecular pathogenesis is unclear. An association between stress and stress-induced hypersecretion of glucocorticoids occurs during stress. Dexamethasone (a synthetic glucocorticoid steroid) has been reported to induce apoptosis and increase the activity of monoamine oxidase (MAO) (Youdim et al. 1989). MAO is an enzyme for the degradation of aminergic neurotransmitters; dopamine, noradrenaline and serotonin and dietary amines and MAO inhibitors are classical antidepressant drugs. In this study, we have compared the ability of rasagiline (Azilect) and its main metabolite, R-aminoindan with selegiline (Deprenyl) in prevention of dexamethasone-induced brain cell death employing human neuroblastoma SH-SY5Y cells and glioblastoma 1242-MG cells. Dexamethasone reduced cell viability as measured by MTT test, but rasagiline, selegiline, and 1-R-aminoindan could significantly prevent dexamethasone-induced brain cell death. Among three drugs, rasagiline had the highest neuroprotective effect. Furthermore, the inhibitory effects of these drugs on MAO B catalytic activity and on apoptotic DNA damage (TUNEL staining) were examined. Rasagiline exhibited highest inhibition on MAO B enzymatic activity and prevention on DNA damage as compared to selegiline and 1-R-aminoindan. In summary, the greater neuroprotective effect of rasagiline may be associated with the combination of the parent drug and its metabolite 1-R-aminoindan.


Assuntos
Anti-Inflamatórios/toxicidade , Apoptose/efeitos dos fármacos , Dexametasona/toxicidade , Fármacos Neuroprotetores/farmacologia , Análise de Variância , Encéfalo/citologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glioblastoma , Humanos , Marcação In Situ das Extremidades Cortadas/métodos , Indanos/farmacologia , Monoaminoxidase/metabolismo , Neuroblastoma , Selegilina/farmacologia , Sais de Tetrazólio , Tiazóis
11.
J Biol Chem ; 284(25): 16723-16735, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19401466

RESUMO

Monoamine oxidase (MAO) B deaminates a number of biogenic and dietary amines and plays an important role in many biological processes. Among hormonal regulations of MAO B, we have recently found that retinoic acid (RA) significantly activates both MAO B promoter activity and mRNA expression in a human neuroblastoma BE(2)C cell line. RA activates MAO B promoter in both concentration- and time-dependent manners, which is mediated through retinoic acid receptor alpha (RARalpha) and retinoid X receptor alpha (RXRalpha). There are four retinoic acid response elements (RAREs) as identified in the MAO B 2-kb promoter, and mutation of the third RARE reduced RA-induced MAO B promoter activation by 50%, suggesting this element is important. Electrophoretic mobility shift analysis and chromatin immunoprecipitation assay demonstrated that RARalpha specifically binds to the third RARE both in vitro and in vivo. Moreover, transient transfection and luciferase assays revealed that Sp1 enhances but not essentially required for the RA activation of MAO B through two clusters of Sp1-binding sites in the MAO B promoter. RARalpha physically interacts with Sp1 via zinc finger domains in Sp1 as determined by co-immunoprecipitation assay. Further, RARalpha was shown to be recruited by Sp1 and to form a transcriptional regulation complex with Sp1 in the Sp1-binding sites of natural MAO B promoter. Taken together, this study provides evidence for the first time showing the stimulating effect of RA on MAO B and new insight into the molecular mechanisms of MAO B regulation by hormones.


Assuntos
Monoaminoxidase/genética , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Tretinoína/farmacologia , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Primers do DNA/genética , Humanos , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Receptor alfa de Ácido Retinoico , Receptor X Retinoide alfa/metabolismo , Fator de Transcrição Sp1/metabolismo
12.
Eur J Hum Genet ; 16(5): 626-34, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18212819

RESUMO

Genetic studies of delinquent and criminal behavior are rare in spite of the wide recognition that individuals may differ in their propensity for delinquency and criminality. Using 2524 participants in Add Health in the United States, the present study demonstrates a link between the rare 2 repeat of the 30-bp VNTR in the MAOA gene and much higher levels of self-reported serious and violent delinquency. The evidence is based on a statistical association analysis and a functional analysis of MAOA promoter activity using two human brain-derived cell lines: neuroblastoma SH-SY5Y and human glioblastoma 1242-MG. The association analysis shows that men with a 2R report a level of serious delinquency and violent delinquency in adolescence and young adulthood that were about twice (CI: (0.21, 3.24), P=0.025; and CI: (0.37, 2.5), P=0.008 for serious and violent delinquency, respectively) as high as those for participants with the other variants. The results for women are similar, but weaker. In the functional analysis, the 2 repeat exhibits much lower levels of promoter activity than the 3 or 4 repeat.


Assuntos
Delinquência Juvenil , Repetições Minissatélites/genética , Monoaminoxidase/genética , Regiões Promotoras Genéticas/genética , Adolescente , Adulto , Distribuição por Idade , Linhagem Celular Tumoral , Criança , Feminino , Genótipo , Humanos , Estudos Longitudinais , Masculino , Análise de Regressão
13.
Proc Natl Acad Sci U S A ; 103(29): 10923-8, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16829576

RESUMO

Monoamine oxidase A (MAO A) degrades serotonin, norepinephrine, and dopamine and produces reactive oxygen that may cause neuronal cell death. We have previously reported that a novel transcription factor R1 (RAM2/CDCA7L/JPO2) inhibits the MAO A promoter and enzymatic activities. This study reports the roles of MAO A and R1 in apoptosis and proliferation. We have found that in serum starvation-induced apoptosis, p38 kinase, MAO A, and caspase-3 were increased, whereas Bcl-2 and R1 were reduced. Using a p38 kinase inhibitor, R1 overexpression, and MAO A inhibitor, we have shown that MAO A and R1 are downstream of p38 kinase and Bcl-2, but upstream of caspase-3. Inhibition of MAO A prevents cell apoptosis. This notion was further supported by the finding that serum starvation-induced apoptosis is reduced in cortical brain cells from MAO A-deficient mice compared with WT. In addition, we found that MAO A and R1 are involved in the c-Myc-induced proliferative signaling pathway in the presence of serum. Immunoprecipitation and immunohistochemistry experiments indicate that the oncogene c-Myc colocalizes with R1 and induces R1 gene expression. Using R1 overexpression, R1 small interfering RNA, and a MAO A inhibitor, we found that R1 and MAO A act upstream of cyclin D1 and E2F1. In summary, this study demonstrates the functions of MAO A and its repressor R1 in apoptotic signaling pathways.


Assuntos
Apoptose , Monoaminoxidase/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Meios de Cultura Livres de Soro , Ciclina D1/genética , Fator de Transcrição E2F1/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monoaminoxidase/deficiência , Monoaminoxidase/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras
14.
J Biol Chem ; 281(30): 21512-21525, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16728402

RESUMO

Monoamine oxidase (MAO) A is a key enzyme for the degradation of neurotransmitters serotonin, norepinephrine, and dopamine. There are three consensus glucocorticoid/androgen response elements and four Sp1-binding sites in the human monoamine oxidase A 2-kb promoter. A novel transcription factor R1 (RAM2/CDCA7L) interacts with Sp1-binding sites and represses MAO A gene expression. Luciferase assays show that glucocorticoid (dexamethasone) and androgen (R1881) increase MAO A promoter and catalytic activities in human neuroblastoma and glioblastoma cells. Gel-shift analysis demonstrates that glucocorticoid/androgen receptors interact directly with the third glucocorticoid/androgen response element. Glucocorticoid/androgen receptors also interact with Sp1-binding sites indirectly via transcription factor Sp1. In addition, dexamethasone induces R1 translocation from the cytosol to the nucleus in a time-dependent manner in both the neuroblastoma and wild-type UW228 cell lines but not in R1 knock-down UW228 cells. In summary, this study shows that glucocorticoid enhances monoamine oxidase A gene expression by 1) regulation of R1 translocation; 2) direct interaction of the glucocorticoid receptor with the third glucocorticoid/androgen response element; and 3) indirect interaction of glucocorticoid receptor with the Sp1 or R1 transcription factor on Sp1-binding sites of the MAO A promoter. Androgen also up-regulates MAO A gene expression by direct interaction of androgen receptor with the third glucocorticoid/androgen response element. Androgen receptor indirectly interacts with the Sp1, but not R1 transcription factor, on Sp1-binding sites. This study provides new insights on the differential regulation of MAO A by glucocorticoid and androgen.


Assuntos
Androgênios/metabolismo , Regulação da Expressão Gênica , Glucocorticoides/química , Monoaminoxidase/química , Proteínas Repressoras/química , Fator de Transcrição Sp1/química , Fatores de Transcrição/química , Sequência de Bases , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Dados de Sequência Molecular , Neuroblastoma/metabolismo , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo
15.
J Biol Chem ; 280(12): 11552-9, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15654081

RESUMO

Monoamine oxidase catalyzes the oxidative deamination of a number of neurotransmitters. A deficiency in monoamine oxidase A results in aggressive behavior in both humans and mice. Studies on the regulation of monoamine oxidase A gene expression have shown that the Sp1 family is important for monoamine oxidase A expression. To search for novel transcription factors, the sequences of three Sp1 sites in the monoamine oxidase A core promoter were used in the yeast one-hybrid system to screen a human cDNA library. A novel repressor, R1 (RAM2), has been cloned. The R1 cDNA encodes a protein with 454 amino acids and an open reading frame at the 5'-end. The transfection of R1 in a human neuroblastoma cell line, SK-N-BE (2)-C, inhibited the monoamine oxidase A promoter and enzymatic activity. The degree of inhibition of monoamine oxidase A by R1 correlated with the level of R1 protein expression. R1 was also found to repress monoamine oxidase A promoter activity within a natural chromatin environment. A gel-shift assay indicated that the endogenous R1 protein in SK-N-BE (2)-C cells interacted with the R1 binding sequence. R1 also bound directly to the natural monoamine oxidase A promoter in vivo as shown by chromatin immunoprecipitation assay. Immunocytochemical analysis showed that R1 was expressed in both cytosol and nucleus, which suggested a role for R1 in transcriptional regulation. Northern blot analysis revealed the presence of endogenous R1 mRNA in human brain and peripheral tissues. Taken together, this study shows that R1 is a novel repressor that inhibits monoamine oxidase A gene expression.


Assuntos
Regulação Enzimológica da Expressão Gênica , Monoaminoxidase/genética , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Catálise , Linhagem Celular Tumoral , Cromatina/fisiologia , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Monoaminoxidase/química , Regiões Promotoras Genéticas
16.
J Biol Chem ; 279(20): 21021-8, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15024015

RESUMO

Monoamine oxidases (MAO) A and B catalyze the oxidative deamination of many biogenic and dietary amines. Abnormal expression of MAO has been implicated in several psychiatric and neurodegenerative disorders. Human MAO B core promoter (-246 to -99 region) consists of CACCC element flanked by two clusters of overlapping Sp1 sites. Here, we show that cotransfection with transforming growth factor (TGF)-beta-inducible early gene (TIEG)2 increased MAO B gene expression at promoter, mRNA, protein, and catalytic activity levels in both SH-SY5Y and HepG2 cells. Mutation of the CACCC element increased the MAO B promoter activity, and cotransfection with TIEG2 further increased the promoter activity, suggesting that CACCC was a repressor element. This increase was reduced when the proximal Sp1 overlapping sites was mutated. Similar interactions were found with Sp3. These results showed that TIEG2 and Sp3 were repressors at the CACCC element but were activators at proximal Sp1 overlapping sites of MAO B. Gel-shift and chromatin immunoprecipitation assays showed that TIEG2 and Sp3 bound directly to CACCC element and the proximal Sp1 sites in both synthetic oligonucleotides and natural MAO B core promoter. TIEG2 had a higher affinity to Sp1 sites than CACCC element, whereas Sp3 had an equal affinity to both elements. Thus, TIEG2 was an activator, but Sp3 had no effect on MAO B gene expression. This study provides new insights into MAO B gene expression and illustrates the complexity of gene regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Monoaminoxidase/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Reguladoras de Apoptose , Sequência de Bases , Sítios de Ligação , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Primers do DNA , Genes Reporter , Humanos , Cinética , Neoplasias Hepáticas , Luciferases/genética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , Fator de Transcrição Sp3 , Transcrição Gênica
17.
J Neurosci ; 23(19): 7415-25, 2003 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-12917378

RESUMO

Altered regulation of 5-HT1A receptors is implicated in mood disorders such as anxiety and major depression. To provide insight into its transcriptional regulation, we previously identified a novel DNA element [14 bp 5'-repressor element (FRE)] of the 5-HT1A receptor gene that mediates repression in neuronal and non-neuronal cells (Ou et al., 2000). We have now cloned a novel DNA binding protein [five' repressor element under dual repression binding protein-1 (Freud-1)] that binds to FRE to mediate repression of the 5-HT1A receptor or heterologous promoters. Freud-1 is evolutionarily conserved and contains two DM-14 basic repeats, a predicted helix-loop-helix DNA binding domain, and a protein kinase C conserved region 2 (C2)/calcium-dependent lipid binding (CalB) calcium/phospholipid binding domain. An intact CalB domain was required for Freud-1-mediated repression. In serotonergic raphe cells, overexpression of Freud-1 repressed the 5-HT1A promoter and decreased 5-HT1A receptor protein levels, whereas transfection of antisense to Freud-1 derepressed the 5-HT1A gene and increased 5-HT1A receptor protein expression. Calcium-dependent signaling blocked Freud-1-FRE binding and derepressed the 5-HT1A promoter. Treatment with inhibitors of calmodulin or CAM-dependent protein kinase reversed calcium-mediated inhibition of Freud-1. Freud-1 RNA and protein were present in raphe nuclei, hippocampus, cortex, and hypothalamus, and Freud-1 protein was colocalized with 5-HT1A receptors, suggesting its importance in regulating 5-HT1A receptors in vivo. Thus, Freud-1 represents a novel calcium-regulated repressor that negatively regulates basal 5-HT1A receptor expression in neurons and may play a role in the altered regulation of 5-HT1A receptors associated with anxiety or major depression.


Assuntos
Cálcio/farmacologia , Proteínas de Ligação a DNA/fisiologia , Inativação Gênica , Neurônios/metabolismo , Receptores de Serotonina/genética , Proteínas Repressoras/fisiologia , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/metabolismo , Linhagem Celular , Clonagem Molecular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Inativação Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , Núcleos da Rafe/metabolismo , Ratos , Receptores de Serotonina/biossíntese , Receptores 5-HT1 de Serotonina , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Elementos Silenciadores Transcricionais
18.
J Biol Chem ; 277(25): 22222-30, 2002 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-11956220

RESUMO

Monoamine oxidases (MAO) A and B deaminate a number of biogenic amines. Aberrant expression of MAO is implicated in several psychiatric and neurogenerative disorders. In this study, we have shown that phorbol 12-myristate 13-acetate (PMA) increases human MAO B, but not MAO A, gene expression. The sequence between -246 and -225 bp consists of overlapping binding sites (Sp1/Egr-1/Sp1) that are recognized by Sp1, Sp3, and PMA-inducible Egr-1 is essential for PMA activation. PMA transiently increases egr-1 and c-jun gene expression. Mutation studies show that Egr-1 and c-Jun transactivate the MAO B promoter and increase endogenous MAO B transcripts via the Sp1/Egr-1/Sp1 overlapping binding sites. Sp3 inhibits Sp1 and Egr-1 activation of MAO B gene expression. c-fos gene expression was increased by PMA but not involved in MAO B gene transcription. Furthermore, protein kinase C inhibitor blocks the PMA-dependent activation of MAO B. Co-transfection of the MAO B promoter with dominant negative forms of Ras, Raf-1, MEKK1, MEK1, MEK3, MEK7, ERK2, JNK1, and p38/RK inhibit the PMA-dependent activation of the MAO B promoter. These results indicate that MAO B expression is selectively induced by the activation of protein kinase C and MAPK signaling pathway and that c-Jun and Egr-1 appear to be the ultimate targets of this regulation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Imediatamente Precoces , Sistema de Sinalização das MAP Quinases , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Sítios de Ligação , Northern Blotting , Western Blotting , Catálise , Linhagem Celular , Núcleo Celular/metabolismo , Relação Dose-Resposta a Droga , Proteína 1 de Resposta de Crescimento Precoce , Ativação Enzimática , Deleção de Genes , Regulação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genes Dominantes , Genes Reporter , Vetores Genéticos , Humanos , Luciferases/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3 , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA