Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 220: 113496, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933755

RESUMO

The synthesis of two isomeric testosterone dimers and an androstenedione dimer is reported. The design takes advantage of an efficient transformation of testosterone leading to the synthesis of the key diene, 7α-(buta-1,3-dienyl)-4-androsten-17ß-ol-3-one, through an elimination reaction. It was found that in some instances the same reaction led to partial epimerization of the 17ß-hydroxyl group into the 17α-hydroxyl group. The specific orientation of the hydroxyl function was confirmed by NMR spectroscopy. Capitalizing on this unforeseen side reaction, several dimers were assembled using an olefin metathesis reaction with Hoveyda-Grubbs catalyst. This led to the formation of two isomeric testosterone dimers with 17α-OH or 17ß-OH (14α and 14ß) as well as an androstenedione dimer (14). The new dimers and their respective precursors were tested on androgen-dependent (LNCaP) and androgen independent (PC3 and DU145) prostate cancer cells. It was discovered that the most active dimer was made of the natural hormone testosterone (14ß) with an average IC50 of 13.3 µM. In LNCaP cells, 14ß was ∼5 times more active than the antiandrogen drug cyproterone acetate (IC50 of 12.0 µM vs. 59.6 µM, respectively). At low concentrations (0.25-0.5 µM), 14α and 14ß were able to completely inhibit LNCaP cell growth induced by testosterone or dihydrotestosterone. Furthermore, cross-reactivity of androgen-based dimers with sterol-metabolizing cytochrome P450 3A4 was explored and the results are disclosed herein.


Assuntos
Androstenodiona/farmacologia , Antineoplásicos/farmacologia , Citocromo P-450 CYP3A/metabolismo , Desenho de Fármacos , Neoplasias da Próstata/tratamento farmacológico , Testosterona/farmacologia , Androstenodiona/síntese química , Androstenodiona/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Estrutura Molecular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Recombinantes , Relação Estrutura-Atividade , Testosterona/síntese química , Testosterona/química , Células Tumorais Cultivadas
2.
Mol Immunol ; 120: 32-42, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32045772

RESUMO

The pleiotropic cytokine leukemia inhibitory factor (LIF) is a key gestational factor known to establish dynamic cellular and molecular cross talk at the feto-maternal interface. Previously, we described the regulatory role of the LIF-trophoblast-IL10 axis in the process of macrophage deactivation in response to pro-inflammatory cytokines. However, the direct regulatory effects of LIF in macrophage and trophoblast cell function remains elusive. In this study, we aimed to examine whether and how LIF regulates the behavior of macrophages and trophoblast cells in response to pro-inflammatory stress factors. We found that LIF modulated the activating effects of interferon-gamma (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in macrophages and trophoblast cells by reducing the phosphorylation levels of signal transducer and activator of transcription-1 (Stat1) and -5 (Stat5). Cell activation with IFNγ inhibited cell invasion and migration but this immobilizing effect was abrogated when macrophages and trophoblast cells were deactivated with LIF; macrophage cell motility restitution could in part be explained by the positive effects of LIF in Stat3 activation and matrix metalloproteinase 9 (MMP-9) expression. Pharmacological inhibition of Stat1 and Stat3 indicated that IFNγ-induced Stat1 activation mediated macrophage motility inhibition, and that cell motility in IFNγ-activated macrophages is restored via LIF-induced Stat3 activation and Stat1 inhibition. Moreover, IFNγ-induced TNFα gene expression was also abrogated by LIF through Stat1 inhibition and Stat3 activation. Finally, we have found that cell invasion of trophoblast cells is inhibited when they were cocultured with GM-CSF-differentiated, IFNγ-stimulated macrophages. This effect, however, was inhibited when macrophages were exposed to LIF. Overall, this in vitro study reveals for the first time the anti-inflammatory and pro-gestational activities of LIF by acting directly on macrophages and trophoblast cells.


Assuntos
Mediadores da Inflamação/imunologia , Fator Inibidor de Leucemia/imunologia , Macrófagos/imunologia , Trofoblastos/imunologia , Linhagem Celular , Movimento Celular/imunologia , Técnicas de Cocultura , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interferon gama/imunologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/metabolismo , Troca Materno-Fetal/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Gravidez , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Trofoblastos/citologia , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA