Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Headache ; 64(3): 243-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38385629

RESUMO

OBJECTIVE: The aim of this study was to test whether a combination of sumatriptan with dual enkephalinase inhibitor PL37 would result in an additive or a synergistic effect. BACKGROUND: Combination treatment is frequently used to improve the therapeutic efficacy of drugs. The co-administration of two drugs may result in efficacy at lower doses than those needed for either drug alone, thus minimizing side effects. Here, we tested the effect of the co-administration of two drugs on cutaneous mechanical hypersensitivity (MH), a symptom often affecting cephalic regions in patients with migraine: dual enkephalinase inhibitor PL37, a small molecule that protects enkephalins from rapid degradation, and sumatriptan, a serotonin 5-HT1B/1D receptor agonist. METHODS: We investigated the effects of oral administrations of sumatriptan, PL37, or their combination on changes in cutaneous mechanical sensitivity induced by a single intraperitoneal administration of the nitric oxide donor, isosorbide dinitrate (ISDN) in male rats. Mechanical sensitivity was assessed using von Frey filaments applied to the face of animals to determine pain thresholds. Isobolographic analysis was performed to determine the nature of the interaction between sumatriptan and PL37. RESULTS: Sumatriptan as well as PL37 each produced a dose-dependent inhibition of ISDN-induced cephalic MH. Median effective dose (ED50 ) values were 0.3 and 1.1 mg/kg for sumatriptan and PL37, respectively. An isobolographic analysis of the effect of combined doses of sumatriptan and PL37 based on their calculated ED50 values demonstrated a synergistic effect of the combination on cephalic MH, with an interaction index of 0.14 ± 0.04. CONCLUSION: These results suggest that PL37 acts synergistically with sumatriptan to produce an anti-allodynic effect in a rat model of migraine. Thus, combining PL37 and sumatriptan may be a useful therapeutic strategy in the management of migraine. PLAIN LANGUAGE SUMMARY: There have been many advances in migraine treatment, but we still need more options that are effective and have few side effects. Sumatriptan is one available drug for acute treatment of migraine, but it does not work for every patient and is not suitable for some people. We tested a new drug called PL37 (that blocks enkephalinases) together with sumatriptan and the combination minimized side effects and allowed lower doses of the drugs for effective migraine treatment in an animal model.


Assuntos
Transtornos de Enxaqueca , Sumatriptana , Humanos , Masculino , Ratos , Animais , Neprilisina/efeitos adversos , Transtornos de Enxaqueca/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Dinitrato de Isossorbida/efeitos adversos
2.
Headache ; 63(5): 621-633, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37183526

RESUMO

OBJECTIVE: The aim of this study was to evaluate whether elevating levels of enkephalin by inhibiting their degradation can attenuate stress-induced migraine-like behaviors in mice. BACKGROUND: Previous studies in animals have suggested the delta opioid receptor (DOR) as a novel migraine target. The primary endogenous ligands for DOR are enkephalins and their levels can be increased by pharmacological inhibition of enkephalinases; however, it is not clear whether enkephalinase inhibition can be efficacious in preclinical migraine models through activation of DOR or whether other opioid receptors might be involved. Further, it is not clear whether opioid receptors in the central nervous system are necessary for these effects. METHODS: This study used a model of repetitive restraint stress in mice that induces periorbital hypersensitivity and priming to the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg). Von Frey filaments were used to measure periorbital mechanical thresholds and grimace scores were evaluated by observing mouse facial features. Animals were treated with the dual enkephalinase inhibitor (DENKI) PL37. RESULTS: On day two post-stress, PL37 given to mice via either intravenous injection (10 mg/kg) or oral gavage (20 mg/kg) significantly attenuated stress-induced periorbital hypersensitivity and facial grimace responses. Additionally, both intravenous (10 mg/kg) and oral gavage (20 mg/kg) of PL37 prior to SNP (0.1 mg/kg) administration on day 14 post-stress significantly reduced SNP-induced facial hypersensitivity. Injection of the DOR antagonist naltrindole (0.1 mg/kg) but not the mu-opioid receptor antagonist CTAP (1 mg/kg) prior to PL37 treatment blocked the effects. Finally, pretreatment of mice with the peripherally restricted opioid receptor antagonist naloxone methiodide (5 mg/kg) blocked the effects of PL37. CONCLUSIONS: These data demonstrate that inhibiting enkephalinases, and thus protecting enkephalins from degradation, attenuates stress-induced migraine-like behavior via activation of peripheral DOR. Peripheral targeting of endogenous opioid signaling may be an effective therapeutic strategy for migraine.


Assuntos
Transtornos de Enxaqueca , Antagonistas de Entorpecentes , Camundongos , Animais , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides delta , Neprilisina , Encefalinas/metabolismo , Encefalinas/farmacologia , Receptores Opioides , Transtornos de Enxaqueca/tratamento farmacológico
3.
Brain ; 145(8): 2664-2670, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35411377

RESUMO

The dual enkephalinase inhibitor PL37, a small molecule that protects enkephalins from rapid degradation, has demonstrated analgesic properties in animal pain models and in early human clinical trials. This study tested the antimigraine potential of PL37 on cutaneous mechanical hypersensitivity affecting cephalic regions in migraineurs. Using behavioural testing and c-Fos immunoreactivity in male rats, we investigated the effects of single (oral or intravenous) and repeated oral administration of PL37 on changes in cutaneous mechanical sensitivity and sensitization of the trigeminocervical complex induced by repeated administration of the nitric oxide donor, isosorbide dinitrate. In naïve rats, single or repeated administration of PL37 or vehicle had no effect on cephalic mechanical sensitivity. However, single oral PL37 treatment effectively inhibited isosorbide dinitrate-induced acute cephalic mechanical hypersensitivity. Single intravenous but not oral PL37 administration inhibited chronic cephalic mechanical hypersensitivity. Daily oral administration of PL37 prevented cephalic mechanical hypersensitivity and decreased touch-induced c-Fos expression in trigeminocervical complex following repeated isosorbide dinitrate administration. These data reveal the therapeutic potential of the dual enkephalinase inhibitor PL37 as an acute and prophylactic treatment for migraine. Protecting enkephalins from their degrading enzymes therefore appears to be an innovative approach to treat migraine.


Assuntos
Transtornos de Enxaqueca , Neprilisina , Animais , Encefalinas , Hiperalgesia , Dinitrato de Isossorbida , Masculino , Ratos
4.
Scand J Pain ; 14: 25-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28850427

RESUMO

BACKGROUND: The first line pharmacological treatment of cancer pain is morphine and surrogates but a significant pain relief and a reduction of the side-effects of these compounds makes it necessary to combine them with other drugs acting on different targets. The aim of this study was to measure the antinociceptive effect on cancer-induced bone pain resulting from the association of the endogenous opioids enkephalin and non-opioid analgesic drugs. For this purpose, PL265 a new orally active single dual inhibitor of the two degrading enkephalins enzymes, neprilysin (NEP) and aminopeptidase N (APN) was used. It strictly increased the levels of enkephalin at their sites of releases. The selected non-opioid compounds are: gabapentin, A-317491 (P2X3 receptor antagonist), ACEA (CB1 receptor antagonist), AM1241 (CB2 receptor antagonist), JWH-133 (CB2 receptor antagonist), URB937 (FAAH inhibitor), and NAV26 (Nav1.7 channel blocker). METHODS: Experiments. Experiments were performed in 5-6 weeks old (26-33g weight) C57BL/6 mice. Cell culture and cell inoculation. B16-F10 melanoma cells were cultured and when preconfluent, treated and detached. Finally related cells were resuspended to obtain a concentration of 2×106 cells/100µL. Then 105 cells were injected into the right tibial medullar cavity. Control mice were treated by killed cells by freezing. Behavioural studies. Thermal withdrawal latencies were measured on a unilatered hot plate (UHP) maintained at 49±0.2°C. Mechanical threshold values were obtained by performing the von Frey test using the "up and down" method. To evaluate the nature (additive or synergistic) of the interactions between PL265 and different drugs, an isobolographic analysis following the method described by Tallarida was performed. RESULTS: The results demonstrate the ability of PL265, a DENKI that prevents the degradation of endogenous ENKs, to counteract cancer-induced bone thermal hyperalgesia in mice, by exclusively stimulating peripheral opioid receptors as demonstrated by used of an opioid antagonist unable to enter the brain. The development of such DENKIs, endowed with druggable pharmacokinetic characteristics, such as good absorption by oral route, can be considered as an important step in the development of much needed novel antihyperalgesic drugs. Furthermore, all the tested combinations resulted in synergistic antihyperalgesic effects. As shown here, the greatest synergistic antinociceptive effect (doses could be lowered by 70%) was produced by the combination of PL265 with the P2X3 receptor antagonist (A-317491), cannabinoid CB1 receptor agonist (exogenous, ACEA and endogenous URB937-protected-AEA) and Nav1.7 blocker (NAV26) whose mechanism of action involves the direct activation of the enkephalinergic system. CONCLUSIONS: These multi-target-based antinociceptive strategies using combinations of non-opioid drugs with dual inhibitors of enkephalin degrading enzymes may bring therapeutic advantages in terms of efficacy and safety by allowing the reduction of doses of one of the compounds or of both, which is of the utmost interest in the chronic treatment of cancer pain. IMPLICATIONS: This article presents synergistic antinociceptive effect produced by the combination of PL265 with non-opioid analgesic drugs acting via unrelated mechanisms. These multi-target-based antinociceptive strategies may bring therapeutic advantages by allowing the reduction of doses, which is of great interest in the chronic treatment of cancer pain.


Assuntos
Analgésicos/farmacologia , Osso e Ossos/efeitos dos fármacos , Dor do Câncer/tratamento farmacológico , Neprilisina/antagonistas & inibidores , Propionatos/farmacologia , Administração Oral , Animais , Osso e Ossos/fisiopatologia , Dor do Câncer/fisiopatologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Encefalinas/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Transplante de Neoplasias , Neprilisina/metabolismo , Distribuição Aleatória
5.
Bioorg Med Chem Lett ; 27(16): 3883-3890, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28676269

RESUMO

New neprilysin inhibitors containing an α-mercaptoketone HSC(R1R2)CO group, as zinc ligand were designed. Two parameters were explored for potency optimization: the size of the inhibitor which could interact with the S1, S1' or S2' domain of the enzyme and the nature of the substituents R1, R2 of the mercaptoketone group. Introduction of a cyclohexyl chain in R1, R2 position and a (3-thiophen)benzyl group in position R3 (compound 12n) yielded to the most potent inhibitor of this series with a Ki value of 2±0.3nM. This result suggests that this new inhibitor interacts within the S1, S1' domain of NEP allowing a pentacoordination of the catalytic Zn2+ ion by the mercaptoketone moiety.


Assuntos
Inibidores Enzimáticos/farmacologia , Cetonas/farmacologia , Neprilisina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cetonas/síntese química , Cetonas/química , Estrutura Molecular , Neprilisina/metabolismo , Relação Estrutura-Atividade
6.
Anal Biochem ; 441(2): 152-61, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23851339

RESUMO

Leukotriene A4 hydrolase (LTA4H) is a bifunctional zinc-dependent metalloprotease bearing both an epoxide hydrolase, producing the pro-inflammatory LTB4 leukotriene, and an aminopeptidase activity, whose physiological relevance has long been ignored. Distinct substrates are commonly used for each activity, although none is completely satisfactory; LTA4, substrate for the hydrolase activity, is unstable and inactivates the enzyme, whereas aminoacids ß-naphthylamide and para-nitroanilide, used as aminopeptidase substrates, are poor and nonselective. Based on the three-dimensional structure of LTA4H, we describe a new, specific, and high-affinity fluorigenic substrate, PL553 [L-(4-benzoyl)phenylalanyl-ß-naphthylamide], with both in vitro and in vivo applications. PL553 possesses a catalytic efficiency (k(cat)/K(m)) of 3.8±0.5×104 M⁻¹ s⁻¹ using human recombinant LTA4H and a limit of detection and quantification of less than 1 to 2 ng. The PL553 assay was validated by measuring the inhibitory potency of known LTA4H inhibitors and used to characterize new specific amino-phosphinic inhibitors. The LTA4H inhibition measured with PL553 in mouse tissues, after intravenous administration of inhibitors, was also correlated with a reduction in LTB4 levels. This authenticates the assay as the first allowing the easy measurement of endogenous LTA4H activity and in vitro specific screening of new LTA4H inhibitors.


Assuntos
Ensaios Enzimáticos/métodos , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Naftalenos/metabolismo , Peptídeos/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/química , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Naftalenos/análise , Peptídeos/análise , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência/métodos , Especificidade por Substrato
7.
J Biomol Screen ; 18(6): 726-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23427044

RESUMO

Detection and quantification of low doses of botulinum toxin serotype A (BoNT/A) in medicinal preparations require precise and sensitive methods. With mounting pressure from governmental authorities to replace the mouse LD50 assay, interest in alternative methods such as the endopeptidase assay, quantifying the toxin active moiety, is growing. Using internal collision-induced fluorescence quenching, Pharmaleads produced peptides encompassing the SNAP-25 cleavage site: a 17-mer (PL63) and a 48-mer (PL50) reaching the previously identified α-exosite, with PL50 showing higher apparent affinity for BoNT/A. Peptide mapping experiments revealed that this increased affinity is mainly due to a connecting peptide sequence between the N-terminus of PL63 and the α-exosite, identifying a new cooperative exosite on BoNT/A. Other endopeptidase substrates available, including SNAPTide and BoTest A/E, are both based on fluorescent resonance energy transfer (FRET) technology. To compare these assays, their limits of detection and quantification were determined using light chain or 150-kDa BoNT/A. Detection limits of PL50 and BoTest were over 100 times better than those using SNAPtide in standard conditions. Although the BoTest possessed a detection limit around 0.2 pM for either BoNT/A form, its quantification limit (9.7 pM) using purified BoNT/A was 12 times inferior to PL50, estimated at 0.8 pM, suitable for medicinal preparation quantification.


Assuntos
Toxinas Botulínicas Tipo A/química , Corantes Fluorescentes/química , Peptídeos/química , Preparações Farmacêuticas/química , Animais , Bioensaio/métodos , Dose Letal Mediana , Limite de Detecção , Camundongos , Sensibilidade e Especificidade
8.
Mol Pharm ; 9(4): 850-61, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22352457

RESUMO

P947 (DOTA-Gd-peptide) was recently identified as an MRI contrast agent for the detection and characterization of the matrix metalloproteinases (MMP)-rich atherosclerotic plaques. Because this product displays a broad spectrum affinity for the MMP family, we hypothesized that it may also recognize other metalloproteinases overactivated in vulnerable atherosclerotic plaques. Therefore, this study aimed at describing, at the molecular and cellular level, the interactions between P947 and proteases of atherosclerotic plaques. Fluorimetric assays were used to measure the in vitro affinity of P947 toward recombinant and purified MMPs, angiotensin-converting enzyme (ACE), endothelin-converting enzyme (ECE-1), neutral endopeptidase (NEP), and both aminopeptidases A and N (APA and APN). Using similar fluorimetric assays associated with specific substrates, enzymatic activities were measured in vulnerable and stable plaques collected from human atherosclerotic carotid arteries. Ex vivo affinity of P947 for metalloproteinases in vulnerable lesions was subsequently determined. Interaction between P947 and major cell types present in atherosclerotic plaques was also investigated in different cell lines: PMA-1-differentiated THP-1 (macrophage), Ox-LDL-treated THP-1 (foam cell), Jurkat cell line (lymphocyte), and human umbilical vein endothelial cell (HUVEC, endothelial cell). Molecular targeting of P947 was confirmed by fluorimetry, ICP-MS, and in vitro MRI approaches. Potential application of P947 for detecting atherosclerotic plaques by in vivo MRI was tested in a rabbit model of atherosclerosis. In vitro, P947 displayed affinities for purified MMPs, ACE, ECE-1, NEP, APA, and APN in the micromolar range. Interestingly, MMPs, ACE, and APN exhibited higher activities in vulnerable plaques from human atherosclerotic carotid samples, as compared to stable plaques. ECE-1, NEP, and APA had either no activity or the same low activity in both vulnerable and stable plaques. P947 showed micromolar affinities for MMPs, ACE, and APN secreted by plaque samples. Moreover, P947 bound to THP-1 macrophages and THP-1 foam cells in a concentration-dependent manner and with a higher intensity than the control contrast agents DOTA-Gd or P1135 (DOTA-Gd coupled to a scrambled peptide). In THP-1 macrophages, P947 inhibited largely (70%) and almost completely (95%) MMP and APN activities, respectively, which strongly suggested an MMP- and APN-dependent binding of P947 to these cells. This enzyme-specific binding was confirmed with in vitro MRI. Indeed, the T1 value of THP-1 cells decreased from 2.094 s (macrophages w/o P947) to 2.004 s (macrophages with 1 mM of P947). In addition, the Gd content measured by ICP-MS was 11.01 ± 1.05 fg Gd/macrophage when cells were incubated in the presence of P947 and only 5.18 ± 0.43 fg Gd/macrophage with the control product P1135. The difference of Gd concentration between both contrast agents corresponded to a specific accumulation of 5.83 fg Gd/cell, which may be detected by MRI. MR imaging in the atherosclerosis rabbit model showed enhancement of the aortic wall after P947 injection with a significant increase of CNR values from 0.21 ± 0.02 (before injection) to 0.37 ± 0.07 (after injection), demonstrating the efficacy of the contrast agent to detect the atherosclerotic plaques in vivo. Taken together, these data suggest that P947 may be an interesting contrast agent for in vivo molecular MR imaging of MMPs, ACE, and APN activities present in vulnerable atherosclerotic plaques.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Aminopeptidases/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Meios de Contraste/metabolismo , Enzimas Conversoras de Endotelina , Fluorometria , Humanos , Metaloendopeptidases/metabolismo , Neprilisina/metabolismo , Peptidil Dipeptidase A/metabolismo , Coelhos
9.
Anal Biochem ; 419(2): 95-105, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21893023

RESUMO

Protease inhibitors represent a major class of drugs, even though a large number of proteases remain unexplored. Consequently, a great interest lies in the identification of highly sensitive substrates useful for both the characterization and the validation of these enzyme targets and for the design of inhibitors as potential therapeutic agents through high-throughput screening (HTS). With this aim, a synthetic substrate library, in which the highly fluorescent (L)-pyrenylalanine residue (Pya) is efficiently quenched by its proximity with the p-nitro-(L)-phenylalanine (Nop) moiety, was designed. The cleavage between Pya and Nop leads to a highly fluorescent metabolite providing the required sensitivity. This library, characterized by a water-soluble primary sequence Ac-SGK-Pya-(X)(n)(-)Nop-GGK-NH(2), X being a mixture of 10 natural amino acids (A, I, L, K, F, W, E, Q, T, P) and n varying from 0 to 3, was validated using enzymes belonging to the four main types of hydrolases: serine-, metallo-, cystein-, and aspartyl-proteases. The selectivity of substrates belonging to this library was evidenced by characterizing specific substrates for the isoenzymes NEP-1 and NEP-2. This library easily synthesized is of great interest for the identification and development of selective and specific substrates for still uncharacterized endoproteases.


Assuntos
Bioquímica/métodos , Peptídeo Hidrolases/metabolismo , Biblioteca de Peptídeos , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Humanos , Hidrólise , Isoenzimas/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Especificidade por Substrato
10.
J Biol Chem ; 285(45): 34390-400, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20807771

RESUMO

Endothelin-converting enzyme-2 (ECE-2) is a membrane-bound zinc-dependent metalloprotease that shares a high degree of sequence homology with ECE-1, but displays an acidic pH optimum characteristic of maturing enzymes acting late in the secretory pathway. Although ECE-2, like ECE-1, can cleave the big endothelin intermediate to produce the vasoconstrictive endothelin peptide, its true physiological function remains to be elucidated, a task that is hampered by the lack of specific tools to study and discriminate ECE-2 from ECE-1, i.e. specific substrates and/or specific inhibitors. To fill this gap, we searched for novel ECE-specific peptide substrates. To this end, peptides derived from the big endothelin intermediate were tested using ECE-1 and ECE-2, leading to the identification of an ECE-1-specific substrate. Moreover, screening of our proprietary fluorigenic peptide Fluofast® libraries using ECE-1 and ECE-2 allowed the identification of Ac-SKG-Pya-F-W-Nop-GGK-NH(2) (PL405), as a specific and high affinity ECE-2 substrate. Indeed, ECE-2 cleaved PL405 at the Pya-F amide bond with a specificity constant (k(cat)/K(m)) of 8.1 ± 0.9 × 10(3) M(-1) s(-1). Using this novel substrate, we also characterized the first potent (K(i) = 7.7 ± 0.3 nM) and relatively selective ECE-2 inhibitor and developed a quantitative fluorigenic ECE-2 assay. The assay was used to study the ex vivo ECE-2 activity in wild type and ECE-2 knock-out tissues and was found to truly reflect ECE-2 expression patterns. The PL405 assay is thus the first tool to study ECE-2 inhibition using high throughput screening or for ex vivo ECE-2 quantification.


Assuntos
Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/química , Endotelinas/química , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Regulação Enzimológica da Expressão Gênica/fisiologia , Metaloendopeptidases/biossíntese , Metaloendopeptidases/química , Peptídeos/química , Animais , Ácido Aspártico Endopeptidases/administração & dosagem , Ácido Aspártico Endopeptidases/genética , Enzimas Conversoras de Endotelina , Endotelinas/genética , Endotelinas/metabolismo , Inibidores Enzimáticos/química , Humanos , Metaloendopeptidases/administração & dosagem , Metaloendopeptidases/genética , Camundongos , Especificidade de Órgãos , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Especificidade por Substrato
11.
J Neurosci ; 27(6): 1315-24, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17287506

RESUMO

Neurotransmitters have emerged as important players in the control of programmed cell death in the cerebral cortex. We report that genetic depletion of serotonin, dopamine, and norepinephrine in mice lacking the vesicular monoamine transporter (VMAT2 KO mice) causes an increase in cell death in the superficial layers of the cingulate and retrosplenial cortices during early postnatal life (postnatal days 0-4). Electron microscopy and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling indicated that this represents a form of apoptosis. Caspase-3 and -9 are over activated in the VMAT2 KO cortex and Bcl-X(L) is downregulated, whereas the apoptosis-inducing factor caspase-8 and FasL/FasR pathway are not involved. Partial inhibition of serotonin or/and catecholamine synthesis by pharmacological treatments or genetic reduction of serotonin neuron number in mice lacking the transcription factor Pet-1 (pheochromocytoma 12 E26 transformation-specific) did not modify the cell death ratios in the cerebral cortex. However, when monoamine oxidase type A was invalidated in the VMAT2 KO background (VMAT2-MAOA DKO mice), increases in 5-HT levels coincided with a reduction of cell death and a normalization of Bcl-X(L) expression. trkB signaling is not implicated in the anti-apoptotic effects of MAOA inhibition because BDNF mRNA levels were unchanged in VMAT2-MAOA DKO mice and because the massive cell death in the cerebral cortex of trkB KO mice is also reverted by genetic invalidation of the MAOA gene. Finally the broad 5-HT2 receptor agonist (-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride prevented the increase in cell death of VMAT2 KO mice. Altogether, these results suggest that high levels of serotonin, acting through 5-HT2 receptors, have neuroprotective action on cortical neurons by controlling Bcl-X(L) mRNA levels and that this action is independent of trkB signaling.


Assuntos
Apoptose/fisiologia , Córtex Cerebral/patologia , Serotonina/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/deficiência , Anfetaminas/farmacologia , Animais , Caspase 3/fisiologia , Caspase 9/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Dopamina/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Giro do Cíngulo/crescimento & desenvolvimento , Giro do Cíngulo/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoaminoxidase/deficiência , Monoaminoxidase/genética , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Neurônios/patologia , Norepinefrina/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Transdução de Sinais , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteína X Associada a bcl-2/fisiologia , Proteína bcl-X/fisiologia
12.
Brain ; 129(Pt 12): 3209-23, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028311

RESUMO

Excitotoxic damage appears to be a critical factor in the formation of perinatal brain lesions associated with cerebral palsy (CP). When injected into newborn mice, the glutamatergic analogue, ibotenate, produces cortical lesions and white matter cysts that mimic human perinatal brain lesions. Neuropeptides are neuronal activity modulators and could therefore modulate glutamate-induced lesions. However, neuropeptides are rapidly degraded by peptidases. Racecadotril, which is rapidly metabolized to its active metabolite thiorphan, is a neutral endopeptidase (NEP) inhibitor used in clinical practice for diarrhoea with a remarkable safety profile. This study aimed to test the original hypothesis that thiorphan could be neuroprotective against ibotenate-induced lesions in newborn mice. Intraperitoneal administration of thiorphan reduced ibotenate-induced cortical lesions by up to 57% and cortical caspase-3 cleavage by up to 59%. This neuroprotective effect was long-lasting and was still observed when thiorphan was administered 12 h after the insult, showing a remarkable window for therapeutic intervention. Further supporting the neuroprotective effect of pharmacological blockade of NEP, mouse pups with a genetic deletion of NEP displayed a significantly reduced size of the ibotenate-induced cortical grey matter lesion when compared with wild-type animals. Thiorphan effects were mimicked by substance P (SP) and, in a less potent manner, by neurokinin A. Thiorphan effects were inhibited by blockers of NK1 and NK2 receptors. Real-time reverse transcription-polymerase chain reaction, autoradiography and immunohistochemistry confirmed the expression of NK1 and NK2 receptors in the neonatal murine neocortex. These data demonstrate that thiorphan prevents neonatal excitotoxic cortical damage, an effect largely mediated by SP. Thiorphan could represent a promising drug for the prevention of CP, which remains a challenging disease. In a broader context, these results also raise potential implications for the prevention of neurodegenerative diseases involving glutamate-mediated excitotoxic neuronal death.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Paralisia Cerebral/patologia , Neprilisina/antagonistas & inibidores , Fármacos Neuroprotetores/administração & dosagem , Inibidores de Proteases/administração & dosagem , Tiorfano/administração & dosagem , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/patologia , Paralisia Cerebral/prevenção & controle , Agonistas de Aminoácidos Excitatórios , Feminino , Ácido Ibotênico , Imuno-Histoquímica/métodos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurocinina A/farmacologia , Antagonistas dos Receptores de Neurocinina-1 , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Receptores da Neurocinina-2/antagonistas & inibidores , Convulsões/prevenção & controle , Substância P/farmacologia
13.
Biochem Biophys Res Commun ; 335(2): 356-60, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16081046

RESUMO

Modeling the three-dimensional structure of neprilysin 2 (NEP2) using the crystal structure of neprilysin as template revealed that their active sites share many common features, though slight differences therein cannot completely account for their specific pharmacological profiles. Recent evidence also suggest that residues outside the active site can play crucial functions in the maturation and enzymatic activity of these metalloproteases. To further explore the functions of amino acids in the acquisition and maintenance of the NEP2 structure, site-directed mutagenesis of conserved residues involved in the enzymatic activity of ECE-1 was performed. In particular, the ultimate tryptophan residue of ECE-1 was recently shown to be important in its activation. This residue was thus mutated in the secreted isoform of NEP2, as were proline residues located in its vicinity. Expression of these mutants in AtT20 cells and study of their secretion and catalytic activities shows that while the ultimate tryptophan residue of the NEP2 sequence is not essential to its proper and activity, structural changes in its vicinity can have a severe impact on the maturation processes involved in the activation of NEP2.


Assuntos
Neprilisina/química , Triptofano/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Linhagem Celular , Linhagem Celular Tumoral , Deleção de Genes , Hidrólise , Immunoblotting , Cinética , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Neprilisina/genética , Neprilisina/metabolismo , Peptídeos/química , Prolina/química , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
J Biol Chem ; 280(22): 21272-83, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15769748

RESUMO

The Kell blood group is a highly polymorphic system containing over 20 different antigens borne by the protein Kell, a 93-kDa type II glycoprotein that displays high sequence homology with members of the M13 family of zinc-dependent metalloproteases whose prototypical member is neprilysin. Kell K1 is an antigen expressed in 9% of the Caucasian population, characterized by a point mutation (T193M) of the Kell K2 antigen, and located within a putative N-glycosylation consensus sequence. Recently, a recombinant, non-physiological, soluble form of Kell was shown to cleave Big ET-3 to produce the mature vasoconstrictive peptide. To better characterize the enzymatic activity of the Kell protein and the possible differences introduced by antigenic point mutations affecting post-translational processing, the membrane-bound forms of the Kell K1 and Kell K2 antigens were expressed either in K562 cells, an erythroid cell line, or in HEK293 cells, a non-erythroid system, and their pharmacological profiles and enzymatic specificities toward synthetic and natural peptides were evaluated. Results presented herein reveal that the two antigens possess considerable differences in their enzymatic activities, although not in their trafficking pattern. Indeed, although both antigens are expressed at the cell surface, Kell K1 protein is shown to be inactive, whereas the Kell K2 antigen binds neprilysin inhibitory compounds such as phosphoramidon and thiorphan with high affinity, cleaves the precursors of the endothelin peptides, and inactivates members of the tachykinin family with enzymatic properties resembling those of other members of the M13 family of metalloproteases to which it belongs.


Assuntos
Antígenos de Superfície/fisiologia , Proteínas Sanguíneas/fisiologia , Metaloproteases/química , Antígenos/química , Antígenos de Superfície/química , Proteínas Sanguíneas/química , Células da Medula Óssea/metabolismo , Brefeldina A/farmacologia , Catálise , Linhagem Celular , Membrana Celular/metabolismo , Separação Celular , Cromatografia Líquida de Alta Pressão , Primers do DNA/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eritrócitos/metabolismo , Citometria de Fluxo , Glicosídeo Hidrolases/metabolismo , Glicosilação , Humanos , Hidrólise , Células K562 , Cinética , Espectrometria de Massas , Metaloendopeptidases/química , Microscopia de Fluorescência , Neurocinina A/química , Peptídeos/química , Fenótipo , Reação em Cadeia da Polimerase , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Taquicininas/química , Taquicininas/metabolismo , Temperatura , Transfecção , Zinco/química
15.
Protein Pept Lett ; 11(5): 479-89, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15544569

RESUMO

Neprilysin 2 is a recently identified glycoprotein displaying the highest degree of sequence identity with neprilysin (EC 3.4.24.11), the prototypical member of the M13 family of zinc-dependent metalloproteases. Whereas neprilysin has been shown to be involved in the inactivation of endogenous messenger peptides, like enkephalins and tachykinins, the true physiological functions of neprilysin 2 remain unknown.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neprilisina/química , Neprilisina/metabolismo , Animais , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Neprilisina/genética , Relação Estrutura-Atividade , Especificidade por Substrato
16.
J Biol Chem ; 279(44): 46172-81, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15294904

RESUMO

Neprilysin 2 (NEP2), a recently identified member of the M13 subfamily of metalloproteases, shares the highest degree of homology with the prototypical member of the family neprilysin. Whereas the study of the in vitro enzymatic activity of NEP2 shows that it resembles that of NEP as it cleaves the same substrates often at the same amide bonds and binds the same inhibitory compounds albeit with different potencies, its physiological role remains elusive because of the lack of selective inhibitors. To aid in the design of these novel compounds and better understand the different inhibitory patterns of NEP and NEP2, the x-ray structure of NEP was used as a template to build a model of the NEP2 active site. The results of our modeling suggest that the overall structure of NEP2 closely resembles that of NEP. The model of the active site reveals a 97% sequence identity with that of NEP with differences located within the S'(2) subsite of NEP2 where Ser(133) and Leu(739) replace two glycine residues in NEP. To validate the proposed model, site-directed mutagenesis was performed on a series of residues of NEP2, mutants expressed in AtT20 cells, and their ability to bind various substrates and inhibitory compounds was tested. The results confirm the involvement of the conserved Arg(131) and Asn(567) in substrate binding and catalytic activity of NEP2 and further show that the modifications in its S'(2) pocket, particularly the presence therein of Leu(739), account for a number of differences in inhibitor binding between NEP and NEP2.


Assuntos
Neprilisina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Hidrólise , Cinética , Metaloendopeptidases , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neprilisina/antagonistas & inibidores , Ratos
17.
Biochem J ; 363(Pt 3): 697-705, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11964170

RESUMO

Neprilysin (NEP) 2 is a recently cloned glycoprotein displaying a high degree of sequence identity with neprilysin (EC 3.4.24.11), the prototypical member of the M13 subfamily of metalloproteases. Whereas NEP is involved in the metabolism of several bioactive peptides by plasma membranes of various cells, the enzymic properties and physiological functions of NEP2 are unknown. Here we characterize the cell-expression modalities and enzymic specificity of two alternatively spliced isoforms of NEP2 in Chinese hamster ovary and AtT20 cells. In the two cell lines, both isoforms are type II glycoproteins inserted in the endoplasmic reticulum as inactive precursors. Maturation detected by Western-blot analysis of glycosidase digests was cell-specific and more efficient in the endocrine cell line. The enzymic activity of both isoforms semi-purified from AtT20 cells reveals comparable specificities in terms of model substrates, pH optima and inhibitory patterns. NEP2 activity was compared with that of NEP regarding potencies of transition-state inhibitors, modes of hydrolysis, maximal hydrolysis rates and apparent affinities of bioactive peptides. Although all transition-state inhibitors of NEP inhibited NEP2 activity, albeit with different potencies, and many peptides were cleaved at the same amide bond by both peptidases, differences could be observed, i.e. in the hydrolysis of gonadotropin-releasing hormone and cholecystokinin, which occurred at different sites and more efficiently in the case of NEP2. Differences in cleavage of bioactive peptides, in cell-trafficking patterns and in tissue distribution indicate that NEP and NEP2 play distinct physiological roles in spite of their high degree of sequence identity.


Assuntos
Isoenzimas/metabolismo , Neprilisina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cricetinae , Feminino , Humanos , Isoenzimas/genética , Masculino , Dados de Sequência Molecular , Neprilisina/genética , Splicing de RNA , Ratos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA