RESUMO
When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.
Assuntos
Anoctaminas , Humanos , Animais , Anoctaminas/metabolismo , Cálcio/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Anoctamina-1/metabolismoRESUMO
The Ca2+ activated Cl- channel TMEM16A (anoctamin 1; ANO1) is expressed in secretory epithelial cells of airways and intestine. Previous studies provided evidence for a role of ANO1 in mucus secretion. In the present study we investigated the effects of the two ANO1-inhibitors niclosamide (Niclo) and benzbromarone (Benz) in vitro and in vivo in mouse models for cystic fibrosis (CF) and asthma. In human CF airway epithelial cells (CFBE), Ca2+ increase and activation of ANO1 by adenosine triphosphate (ATP) or ionomycin was strongly inhibited by 200 nM Niclo and 1 µM Benz. In asthmatic mice airway mucus secretion was inhibited by intratracheal instillation of Niclo or Benz. In homozygous F508del-cftr mice, intestinal mucus secretion and infiltration by CD45-positive cells was inhibited by intraperitoneal injection of Niclo (13 mg/kg/day for 7 days). In homozygous F508del-cftr rats intestinal mucus secretion was inhibited by oral application of Benz (5 mg/kg/day for 60 days). Taken together, well tolerated therapeutic concentrations of niclosamide and benzbromarone corresponding to plasma levels of treated patients, inhibit ANO1 and intracellular Ca2+ signals and may therefore be useful in inhibiting mucus hypersecretion and mucus obstruction in airways and intestine of patients suffering from asthma and CF, respectively.
Assuntos
Asma , Fibrose Cística , Humanos , Camundongos , Ratos , Animais , Niclosamida/farmacologia , Benzobromarona/farmacologia , Benzobromarona/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Fibrose Cística/tratamento farmacológico , Anoctamina-1 , Muco , IntestinosRESUMO
Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.
Assuntos
Asma , COVID-19 , Camundongos , Animais , Anoctamina-1/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Anoctaminas/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Canais de Cloreto/metabolismoRESUMO
The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.
Assuntos
Fibrose Cística , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Anoctaminas , Proteínas de Membrana Transportadoras , Transportadores de Sulfato/genética , AntiportersRESUMO
SLC26A9 is one out of 11 proteins that belong to the SLC26A family of anion transporters. Apart from expression in the gastrointestinal tract, SLC26A9 is also found in the respiratory system, in male tissues and in the skin. SLC26A9 has gained attention because of its modifier role in the gastrointestinal manifestation of cystic fibrosis (CF). SLC26A9 appears to have an impact on the extent of intestinal obstruction caused by meconium ileus. SLC26A9 supports duodenal bicarbonate secretion, but was assumed to provide a basal Cl- secretory pathway in airways. However, recent results show that basal airway Cl- secretion is due to cystic fibrosis conductance regulator (CFTR), while SLC26A9 may rather secrete HCO3-, thereby maintaining proper airway surface liquid (ASL) pH. Moreover, SLC26A9 does not secrete but probably supports reabsorption of fluid particularly in the alveolar space, which explains early death by neonatal distress in Slc26a9-knockout animals. While the novel SLC26A9 inhibitor S9-A13 helped to unmask the role of SLC26A9 in the airways, it also provided evidence for an additional role in acid secretion by gastric parietal cells. Here we discuss recent data on the function of SLC26A9 in airways and gut, and how S9-A13 may be useful in unraveling the physiological role of SLC26A9.
Assuntos
Antiporters , Intestinos , Sistema Respiratório , Transportadores de Sulfato , Animais , Transporte Biológico , Fibrose Cística , Transportadores de Sulfato/fisiologia , Antiporters/fisiologiaRESUMO
The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.
Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Prótons , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismoRESUMO
SLC26A9 is an epithelial anion transporter with a poorly defined function in airways. It is assumed to contribute to airway chloride secretion and airway surface hydration. However, immunohistochemistry showing precise localization of SLC26A9 in airways is missing. Some studies report localization near tight junctions, which is difficult to reconcile with a chloride secretory function of SLC26A9. We therefore performed immunocytochemistry of SLC26A9 in sections of human and porcine lungs. Obvious apical localization of SLC26A9 was detected in human and porcine superficial airway epithelia, whereas submucosal glands did not express SLC26A9. The anion transporter was located exclusively in ciliated epithelial cells. Highly differentiated BCi-NS1 human airway epithelial cells grown on permeable supports also expressed SLC26A9 in the apical membrane of ciliated epithelial cells. BCi-NS1 cells expressed the major Cl- transporting proteins CFTR, TMEM16A and SLC26A9 in about equal proportions and produced short-circuit currents activated by increases in intracellular cAMP or Ca2+. Both CFTR and SLC26A9 contribute to basal chloride currents in non-stimulated BCi-NS1 airway epithelia, with CFTR being the dominating Cl- conductance. In wtCFTR-expressing CFBE human airway epithelial cells, SLC26A9 was partially located in the plasma membrane, whereas CFBE cells expressing F508del-CFTR showed exclusive cytosolic localization of SLC26A9. Membrane localization of SLC26A9 and basal chloride currents were augmented by interleukin 13 in wild-type CFTR-expressing cells, but not in cells expressing the most common disease-causing mutant F508del-CFTR. The data suggest an upregulation of SLC26A9-dependent chloride secretion in asthma, but not in the presence of F508del-CFTR.
Assuntos
Asma , Regulador de Condutância Transmembrana em Fibrose Cística , Antiporters/metabolismo , Asma/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismoRESUMO
Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.
Assuntos
Niclosamida/administração & dosagem , Pneumonia/tratamento farmacológico , Sistema Respiratório/efeitos dos fármacos , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , COVID-19/complicações , Células Cultivadas , Modelos Animais de Doenças , Portadores de Fármacos/química , Composição de Medicamentos , Humanos , Hidrogéis/química , Instilação de Medicamentos , Camundongos , Microesferas , Muco/efeitos dos fármacos , Muco/metabolismo , Nanosferas/administração & dosagem , Nanosferas/química , Niclosamida/química , Niclosamida/farmacocinética , Pneumonia/patologia , Polietilenoglicóis/química , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Traqueia , Tratamento Farmacológico da COVID-19RESUMO
BACKGROUND/AIMS: Oxidative stress and infections by Pseudomonas aeruginosa (P. aeruginosa) are prominent in lungs of patients suffering from cystic fibrosis (CF). METHODS: The present study examines effects of P. aeruginosa on lipid peroxidation in human and mouse lungs, and cell death induced by P. aeruginosa in human airway epithelial cells. The role of the Ca2+ activated Cl- channel TMEM16A, the phospholipid scramblase TMEM16F, and the CFTR Cl- channel for ferroptotic cell death is examined. RESULTS: Lipid peroxidation was detected in human CF lungs, which correlated with bacterial infection. In vivo inoculation with P. aeruginosa or Staphylococcus aureus (S. aureus) induced lipid peroxidation in lungs of mice lacking expression of CFTR, and in lungs of wild type animals. Incubation of CFBE human airway epithelial cells with P. aeruginosa induced an increase in reactive oxygen species (ROS), causing lipid peroxidation and cell death independent of expression of wt-CFTR or F508del-CFTR. Knockdown of TMEM16A attenuated P. aeruginosa induced cell death. Antioxidants such as coenzyme Q10 and idebenone as well as the inhibitor of ferroptosis, ferrostatin-1, inhibited P. aeruginosa-induced cell death. CFBE cells expressing wtCFTR, but not F508del-CFTR, activated a basal Cl- conductance upon exposure to P. aeruginosa, which was caused by an increase in intracellular basal Ca2+ concentrations and activation of Ca2+-dependent adenylate cyclase. CONCLUSION: The data suggest an intrinsic pro-inflammatory phenotype in CF epithelial cells, while ferroptosis is observed in both non-CF and CF epithelial cells upon infection with P. aeruginosa. CF cells fail to activate fluid secretion in response to infection with P. aeruginosa. The use of antioxidants and inhibitors of ferroptosis is proposed as a treatment of pneumonia caused by infection with P. aeruginosa.
Assuntos
Fibrose Cística/patologia , Ferroptose , Peroxidação de Lipídeos , Pulmão/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/fisiologia , Animais , Linhagem Celular , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/metabolismoRESUMO
Activation of the Ca2+ activated Cl- channel TMEM16A is proposed as a treatment in inflammatory airway disease. It is assumed that activation of TMEM16A will induce electrolyte secretion, and thus reduce airway mucus plugging and improve mucociliary clearance. A benefit of activation of TMEM16A was shown in vitro and in studies in sheep, but others reported an increase in mucus production and airway contraction by activation of TMEM16A. We analyzed expression of TMEM16A in healthy and inflamed human and mouse airways and examined the consequences of activation or inhibition of TMEM16A in asthmatic mice. TMEM16A was found to be upregulated in the lungs of patients with asthma or cystic fibrosis, as well as in the airways of asthmatic mice. Activation or potentiation of TMEM16A by the compounds Eact or brevenal, respectively, induced acute mucus release from airway goblet cells and induced bronchoconstriction in mice in vivo. In contrast, niclosamide, an inhibitor of TMEM16A, blocked mucus production and mucus secretion in vivo and in vitro. Treatment of airway epithelial cells with niclosamide strongly inhibited expression of the essential transcription factor of Th2-dependent inflammation and goblet cell differentiation, SAM pointed domain-containing ETS-like factor (SPDEF). Activation of TMEM16A in people with inflammatory airway diseases is likely to induce mucus secretion along with airway constriction. In contrast, inhibitors of TMEM16A may suppress pulmonary Th2 inflammation, goblet cell metaplasia, mucus production, and bronchoconstriction, partially by inhibiting expression of SPDEF.
Assuntos
Anoctamina-1/metabolismo , Asma/patologia , Constrição Patológica/complicações , Fibrose Cística/patologia , Inflamação/patologia , Muco/metabolismo , Mucosa Respiratória/patologia , Animais , Anoctamina-1/genética , Asma/etiologia , Asma/metabolismo , Fibrose Cística/etiologia , Fibrose Cística/metabolismo , Células HEK293 , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Mucosa Respiratória/metabolismoRESUMO
TMEM16A, a Ca2+-activated chloride channel (CaCC), and its regulator, CLCA1, are associated with inflammatory airway disease and goblet cell metaplasia. CLCA1 is a secreted protein with protease activity that was demonstrated to enhance membrane expression of TMEM16A. Expression of CLCA1 is particularly enhanced in goblet cell metaplasia and is associated with various lung diseases. However, mice lacking expression of CLCA1 showed the same degree of mucous cell metaplasia and airway hyperreactivity as asthmatic wild-type mice. To gain more insight into the role of CLCA1, we applied secreted N-CLCA1, produced in vitro, to mice in vivo using intratracheal instillation. We observed no obvious upregulation of TMEM16A membrane expression by CLCA1 and no differences in ATP-induced short circuit currents (Iscs). However, intraluminal mucus accumulation was observed by treatment with N-CLCA1 that was not seen in control animals. The effects of N-CLCA1 were augmented in ovalbumin-sensitized mice. Mucus production induced by N-CLCA1 in polarized BCi-NS1 human airway epithelial cells was dependent on TMEM16A expression. IL-13 upregulated expression of CLCA1 and enhanced mucus production, however, without enhancing purinergic activation of Isc. In contrast to polarized airway epithelial cells and mouse airways, which express very low levels of TMEM16A, nonpolarized airway cells express large amounts of TMEM16A protein and show strong CaCC. The present data show an only limited contribution of TMEM16A to airway ion secretion but suggest a significant role of both CLCA1 and TMEM16A for airway mucus secretion.
Assuntos
Anoctamina-1/metabolismo , Asma/patologia , Canais de Cloreto/metabolismo , Células Caliciformes/patologia , Metaplasia/patologia , Muco/metabolismo , Mucosa Respiratória/patologia , Animais , Anoctamina-1/genética , Asma/induzido quimicamente , Asma/metabolismo , Canais de Cloreto/genética , Células Caliciformes/metabolismo , Metaplasia/induzido quimicamente , Metaplasia/metabolismo , Camundongos , Ovalbumina/toxicidade , Mucosa Respiratória/metabolismoRESUMO
TMEM16A is a Ca2+-activated chloride channel that was shown to enhance production and secretion of mucus in inflamed airways. It is, however, not clear whether TMEM16A directly supports mucus production, or whether mucin and TMEM16A are upregulated independently during inflammatory airway diseases such as asthma and cystic fibrosis (CF). We examined this question using BCi-NS1 cells, a human airway basal cell line that maintains multipotent differentiation capacity, and the two human airway epithelial cell lines, Calu-3 and CFBE. The data demonstrate that exposure of airway epithelial cells to IL-8 and IL-13, two cytokines known to be enhanced in CF and asthma, respectively, leads to an increase in mucus production. Expression of MUC5AC was fully dependent on expression of TMEM16A, as shown by siRNA knockdown of TMEM16A. In addition, different inhibitors of TMEM16A attenuated IL-13-induced mucus production. Interestingly, in CFBE cells expressing F508 delCFTR, IL-13 was unable to upregulate membrane expression of TMEM16A or Ca2+-activated whole cell currents. The regulator of TMEM16A, CLCA1, strongly augmented both Ca2+- and cAMP-activated Cl- currents in cells expressing wtCFTR but failed to augment membrane expression of TMEM16A in F508 delCFTR-expressing CFBE cells. The data confirm the functional relationship between CFTR and TMEM16A and suggest an impaired upregulation of TMEM16A by IL-13 or CLCA1 in cells expressing the most frequent CF-causing mutation F508 delCFTR.
Assuntos
Anoctamina-1/metabolismo , Células Epiteliais/metabolismo , Muco/metabolismo , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/metabolismo , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Canais de Cloreto/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HEK293 , Células HT29 , Humanos , Interleucina-13/metabolismo , RNA Interferente Pequeno/metabolismo , Regulação para Cima/fisiologiaRESUMO
INTRODUCTION: TMEM16A is a calcium-activated chloride channel expressed in various secretory epithelia. Two siblings presented in early infancy with reduced intestinal peristalsis and recurrent episodes of haemorrhagic diarrhoea. In one of them, the episodes were characterised by hepatic pneumatosis with gas bubbles in the portal vein similar to necrotising enterocolitis of the newborn. METHODS: Exome sequencing identified a homozygous truncating pathogenic variant in ANO1. Expression analysis was performed using reverse transcription PCR, western blot and immunohistochemistry. Electrophysiological and cell biological studies were employed to characterise the effects on ion transport both in patient respiratory epithelial cells and in transfected HEK293 cells. RESULTS: The identified variant led to TMEM16A dysfunction, which resulted in abolished calcium-activated Cl- currents. Secondarily, CFTR function is affected due to the close interplay between both channels without inducing cystic fibrosis (CF). CONCLUSION: TMEM16A deficiency is a potentially fatal disorder caused by abolished calcium-activated Cl- currents in secretory epithelia. Secondary impairment of CFTR function did not cause a CF phenotyp, which may have implications for CF treatment.
Assuntos
Anoctamina-1/genética , Canais de Cloreto/genética , Predisposição Genética para Doença , Doenças do Recém-Nascido/genética , Proteínas de Neoplasias/genética , Anoctamina-1/deficiência , Transporte Biológico/genética , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/patologia , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/epidemiologia , Doenças do Recém-Nascido/patologia , Masculino , Proteínas de Neoplasias/deficiênciaRESUMO
Previous analysis of CFTR-knockout (CFTR-/-) in piglets has provided important insights into the pathology of cystic fibrosis. However, controversies exist as to the true contribution of CFTR to the pH balance in airways and intestine. We therefore compared ion transport properties in newborn wild-type (CFTR+/+) and CFTR-knockout (CFTR-/- piglets). Tracheas of CFTR-/- piglets demonstrated typical cartilage malformations and muscle cell bundles. CFTR-/- airway epithelial cells showed enhanced lipid peroxidation, suggesting inflammation early in life. CFTR was mainly expressed in airway submucosal glands and was absent in lungs of CFTR-/- piglets, while expression of TMEM16A was uncompromised. mRNA levels for TMEM16A, TMEM16F, and αßγENaC were unchanged in CFTR-/- airways, while mRNA for SLC26A9 appeared reduced. CFTR was undetectable in epithelial cells of CFTR-/- airways and intestine. Small intestinal epithelium of CFTR-/- piglets showed mucus accumulation. Secretion of both electrolytes and mucus was activated by stimulation with prostaglandin E2 and ATP in the intestine of CFTR+/+, but not of CFTR-/- animals. pH was measured inside small bronchi using a pH microelectrode and revealed no difference between CFTR+/+ and CFTR-/- piglets. Intracellular pH in porcine airway epithelial cells revealed only a small contribution of CFTR to bicarbonate secretion, which was absent in cells from CFTR-/- piglets. In contrast to earlier reports, our data suggest a minor impact of CFTR on ASL pH. In contrast, enhanced amiloride-sensitive Na+ absorption may contribute to lung pathology in CFTR-/- piglets, along with a compromised CFTR- and TMEM16A-dependent Cl- transport.
Assuntos
Fibrose Cística/metabolismo , Mucosa Respiratória/metabolismo , Absorção pelo Trato Respiratório , Sódio/metabolismo , Amilorida/farmacologia , Animais , Anoctaminas/genética , Anoctaminas/metabolismo , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Concentração de Íons de Hidrogênio , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Respiratória/efeitos dos fármacos , SuínosRESUMO
Anoctamins such as TMEM16A and TMEM16B are Ca2+-dependent Cl- channels activated through purinergic receptor signaling. TMEM16A (ANO1), TMEM16B (ANO2) and TMEM16F (ANO6) are predominantly expressed at the plasma membrane and are therefore well accessible for functional studies. While TMEM16A and TMEM16B form halide-selective ion channels, TMEM16F and probably TMEM16E operate as phospholipid scramblases and nonselective ion channels. Other TMEM16 paralogs are expressed mainly in intracellular compartments and are therefore difficult to study at the functional level. Here, we report that TMEM16E (ANO5), -H (ANO8), -J (ANO9) and K (ANO10) are targeted to the plasma membrane when fused to a C-terminal CAAX (cysteine, two aliphatic amino acids plus methionin, serine, alanin, cystein or glutamin) motif. These paralogs produce Ca2+-dependent ion channels. Surprisingly, expression of the TMEM16 paralogs in the plasma membrane did not produce additional scramblase activity. In contrast, endogenous scrambling induced by stimulation of purinergic P2X7 receptors was attenuated, in parallel with reduced plasma membrane blebbing. This could suggest that intracellular TMEM16 paralogs operate differently when compared to plasma membrane-localized TMEM16F, and may even stabilize intracellular membranes. Alternatively, CAAX tagging, which leads to expression in non-raft compartments of the plasma membrane, may antagonize phosphatidylserine exposure by endogenous raft-located TMEM16F. CAAX-containing constructs may be useful to further investigate the molecular properties of intracellular TMEM16 proteins.
Assuntos
Anoctaminas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imunofluorescência , Expressão Gênica , Espaço Intracelular/metabolismo , Ionomicina/farmacologia , Família Multigênica , Fosfolipídeos/metabolismo , Ratos , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Casein kinase 2 (CK2) is a highly ubiquitous and conserved serine/threonine kinase that forms a tetramer consisting of a catalytic subunit (CK2α) and a regulatory subunit (CK2ß). Despite being ubiquitous, CK2 is commonly found at higher expression levels in cancer cells, where it inhibits apoptosis, and supports cell migration and proliferation. The Ca2+-activated chloride channel TMEM16A shows similar effects in cancer cells: TMEM16A increases cell proliferation and migration and is highly expressed in squamous cell carcinoma of the head and neck (HNSCC) as well as other malignant tumors. A microscopy-based high-throughput screening was performed to identify proteins that regulate TMEM16A. Within this screen, CK2 was found to be required for proper membrane expression of TMEM16A. small interfering (si) RNA-knockdown of CK2 reduced plasma membrane expression of TMEM16A and inhibited TMEM16A whole cell currents in (cystic fibrosis bronchial epithelial) CFBE airway epithelial cells and in the head and neck cancer cell lines Cal33 and BHY. Inhibitors of CK2, such as TBB and the preclinical compound CX4549 (silmitasertib), also blocked membrane expression of TMEM16A and Ca2+-activated whole cell currents. siRNA-knockout of CK2 and its pharmacological inhibition, as well as knockdown or inhibition of TMEM16A by either niclosamide or Ani9, attenuated cell proliferation. Simultaneous inhibition of CK2 and TMEM16A strongly potentiated inhibition of cell proliferation. Although membrane expression of TMEM16A is reduced by inhibition of CK2, our data suggest that the antiproliferative effects by inhibition of CK2 are mostly independent of TMEM16A. Simultaneous inhibition of TMEM16A by niclosamide and inhibition of CK2 by silmitasertib was additive with respect to blocking cell proliferation, while cytotoxicity was reduced when compared to solely blockade of CK2. Therefore, parallel blockade TMEM16A by niclosamide may assist with anticancer therapy by silmitasertib.
Assuntos
Anoctamina-1/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Neoplasias/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Pulmão/citologia , Inibidores de Proteínas Quinases/farmacologiaRESUMO
TMEM16A is a Ca2+ activated Cl- channel with important functions in airways, intestine, and other epithelial organs. Activation of TMEM16A is proposed as a therapy in cystic fibrosis (CF) to reinstall airway Cl- secretion and to enhance airway surface liquid (ASL). This CFTR-agnostic approach is thought to improve mucociliary clearance and lung function in CF. This could indeed improve ASL, however, mucus release and airway contraction may also be induced by activators of TMEM16A, particularly in inflamed airways of patients with asthma, COPD, or CF. Currently, both activators and inhibitors of TMEM16A are developed and examined in different types of tissues. Here we compare activation and inhibition of endogenous and overexpressed TMEM16A and analyze potential off-target effects. The three well-known blockers benzbromarone, niclosamide, and Ani9 inhibited both TMEM16A and ATP-induced Ca2+ increase by variable degrees, depending on the cell type. Niclosamide, while blocking Ca2+ activated TMEM16A, also induced a subtle but significant Ca2+ store release and inhibited store-operated Ca2+ influx. Niclosamide, benzbromarone and Ani9 also affected TMEM16F whole cell currents, indicating limited specificity for these inhibitors. The compounds Eact, cinnamaldehyde, and melittin, as well as the phosphatidylinositol diC8-PIP2 are the reported activators of TMEM16A. However, the compounds were unable to activate endogenous TMEM16A in HT29 colonic epithelial cells. In contrast, TMEM16A overexpressed in HEK293 cells was potently stimulated by these activators. We speculate that overexpressed TMEM16A might have a better accessibility to intracellular Ca2+, which causes spontaneous activity even at basal intracellular Ca2+ concentrations. Small molecules may therefore potentiate pre-stimulated TMEM16A currents, but may otherwise fail to activate silent endogenous TMEM16A.
Assuntos
Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Animais , Asma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Células HT29 , Humanos , Camundongos , Camundongos KnockoutRESUMO
Ca2+ activated Cl- channels (TMEM16A; ANO1) support cell proliferation and cancer growth. Expression of TMEM16A is strongly enhanced in different types of malignomas. In contrast, TMEM16F (ANO6) operates as a Ca2+ activated chloride/nonselective ion channel and scrambles membrane phospholipids to expose phosphatidylserine at the cell surface. Both phospholipid scrambling and cell swelling induced through activation of nonselective ion currents appear to destabilize the plasma membrane thereby causing cell death. There is growing evidence that activation of TMEM16F contributes to various forms of regulated cell death. In the present study, we demonstrate that ferroptotic cell death, occurring during peroxidation of plasma membrane phospholipids activates TMEM16F. Ferroptosis was induced by erastin, an inhibitor of the cystine-glutamate antiporter and RSL3, an inhibitor of glutathione peroxidase 4 (GPX4). Cell death was largely reduced in the intestinal epithelium, and in peritoneal macrophages isolated from mice with tissue-specific knockout of TMEM16F. We show that TMEM16F is activated during erastin and RSL3-induced ferroptosis. In contrast, inhibition of ferroptosis by ferrostatin-1 and by inhibitors of TMEM16F block TMEM16F currents and inhibit cell death. We conclude that activation of TMEM16F is a crucial component during ferroptotic cell death, a finding that may be useful to induce cell death in cancer cells.
RESUMO
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
RESUMO
The cystic fibrosis transmembrane conductance regulator (CFTR) is the secretory chloride channel in epithelial tissues that has a central role in cystic fibrosis (CF) lung and gastrointestinal disease. A recent publication demonstrates a close association between CFTR and TMEM16A, the calcium-activated chloride channel. Thus, no CFTR chloride currents could be detected in airways and large intestine from mice lacking epithelial expression of TMEM16A. Here, we demonstrate that another plasma membrane-localized TMEM16 paralogue, TMEM16F, can compensate for the lack of TMEM16A. Using TMEM16 knockout mice, human lymphocytes, and a number of human cell lines with endogenous protein expression or heterologous expression, we demonstrate that CFTR can only function in the presence of either TMEM16A or TMEM16F. Double knockout of intestinal epithelial TMEM16A/F expression did not produce offsprings, suggesting a lethal phenotype in utero. Plasma membrane-localized TMEM16A or TMEM16F is required for exocytosis and expression of CFTR in the plasma membrane. TMEM16A/F proteins may therefore have an impact on disease severity in CF. KEY MESSAGES: ⢠Cystic fibrosis is caused by the defective Cl- channel cystic fibrosis transmembrane conductance regulator (CFTR). ⢠A close relationship exists between CFTR and the calcium-activated chloride channels TMEM16A/TMEM16F. ⢠In conditional airway and intestinal knockout mice, lymphocytes from Scott disease patients and in overexpressing cells, CFTR is not functional in the absence of TMEM16A and TMEM16F. ⢠TMEM16A and TMEM16F support membrane exocytosis and are essential for plasma membrane insertion of CFTR.