Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778160

RESUMO

Angiogenesis is one of the characteristics of malignant tumors, and persistent generation of abnormal tumor blood vessels is an important factor contributing to tumor treatment resistance. Epstein-Barr virus (EBV) is a highly prevalent DNA oncogenic virus that is associated with the development of various epithelial malignancies. However, the relationship between EBV infection and tumor vascular abnormalities as well as its underlying mechanisms is still unclear. In this study, we found that compared to EBV-uninfected tumors, EBV-infected tumors were more angiogenic, but the neovascularization was mostly immature vessels without pericyte attachment in both clinical patient tumor samples and mouse xenograft models; These immature vessels exhibited aberrant functionality, characterized by poor blood perfusion and increased vascular permeability. The vascular abnormalities caused by EBV infection exacerbated tumor hypoxia and was responsible for accelerated tumor growth. Mechanistically, EBV infection upregulated ANXA3-HIF-1α-VEGF pathway. Silencing the ANXA3 gene or neutralizing ANXA3 with an antibody can diminish vascular abnormalities, thereby increasing immune cell infiltration and alleviating treatment resistance. Finally, a new therapy combining ANXA3 blockade and NK cell + PD1 antibody significantly inhibited the growth of EBV-infected xenografts in mice. In conclusion, our study identified a previously unrecognized role for EBV infection in tumor vascular abnormalities and revealed its underlying mechanism that upregulated the ANXA3-HIF-1α-VEGF pathway. ANXA3 is a potential therapeutic target for EBV-infected tumors and ANXA3 blockade to improve vascular conditions, in combination with NK cell + PD1 antibody therapy, holds promise as an effective treatment strategy for EBV-associated epithelial malignancies.

2.
Cancer Res ; 84(10): 1613-1629, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381538

RESUMO

Neutrophil extracellular traps (NET), formed by the extracellular release of decondensed chromatin and granules, have been shown to promote tumor progression and metastasis. Tumor-associated neutrophils in hepatocellular carcinoma (HCC) are prone to NET formation, highlighting the need for a more comprehensive understanding of the mechanisms of action of NETs in liver cancer. Here, we showed that DNA of NETs (NET-DNA) binds transmembrane and coiled-coil domains 6 (TMCO6) on CD8+ T cells to impair antitumor immunity and thereby promote HCC progression. TGFß1 induced NET formation, which recruited CD8+ T cells. Binding to NET-DNA inhibited CD8+ T cells function while increasing apoptosis and TGFß1 secretion, forming a positive feedback loop to further stimulate NET formation and immunosuppression. Mechanistically, the N-terminus of TMCO6 interacted with NET-DNA and suppressed T-cell receptor signaling and NFκB p65 nuclear translocation. Blocking NET formation by inhibiting PAD4 induced potent antitumor effects in wild-type mice but not TMCO6-/- mice. In clinical samples, CD8+ T cells expressing TMCO6 had an exhausted phenotype. TGFß1 signaling inhibition or TMCO6 deficiency combined with anti-PD-1 abolished NET-driven HCC progression in vivo. Collectively, this study unveils the role of NET-DNA in impairing CD8+ T-cell immunity by binding TMCO6 and identifies targeting this axis as an immunotherapeutic strategy for blocking HCC progression. SIGNIFICANCE: TMCO6 is a receptor for DNA of NETs that mediates CD8+ T-cell dysfunction in HCC, indicating that the NET-TMCO6 axis is a promising target for overcoming immunosuppression in liver cancer.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , DNA/imunologia , DNA/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem Celular Tumoral , Masculino
3.
Front Immunol ; 14: 1212577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545530

RESUMO

Introduction: The limited response to immune checkpoint blockades (ICBs) in patients with hepatocellular carcinoma (HCC) highlights the urgent need for broadening the scope of current immunotherapy approaches. Lenvatinib has been shown a potential synergistic effect with ICBs. This study investigated the optimal method for combining these two therapeutic agents and the underlying mechanisms. Methods: The effect of lenvatinib at three different doses on promoting tissue perfusion and vascular normalization was evaluated in both immunodeficient and immunocompetent mouse models. The underlying mechanisms were investigated by analyzing the vascular morphology of endothelial cells and pericytes. The enhanced immune infiltration of optimal-dose lenvatinib and its synergistic effect of lenvatinib and anti-PD-1 antibody was further evaluated by flow cytometry and immunofluorescence imaging. Results: There was an optimal dose that superiorly normalized tumor vasculature and increased immune cell infiltration in both immunodeficient and immunocompetent mouse models. An adequate concentration of lenvatinib strengthened the integrity of human umbilical vein endothelial cells by inducing the formation of the NRP-1-PDGFRß complex and activating the Crkl-C3G-Rap1 signaling pathway in endothelial cells. Additionally, it promoted the interaction between endothelial cells and pericytes by inducing tyrosine-phosphorylation in pericytes. Furthermore, the combination of an optimal dose of lenvatinib and an anti-PD-1 antibody robustly suppressed tumor growth. Conclusions: Our study proposes a mechanism that explains how the optimal dose of lenvatinib induces vascular normalization and confirms its enhanced synergistic effect with ICBs.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/patologia , Células Endoteliais/metabolismo , Modelos Animais de Doenças
4.
BMC Med ; 21(1): 327, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635247

RESUMO

BACKGROUND: CD133 is considered a marker for cancer stem cells (CSCs) in several types of tumours, including hepatocellular carcinoma (HCC). Chimeric antigen receptor-specific T (CAR-T) cells targeting CD133-positive CSCs have emerged as a tool for the clinical treatment of HCC, but immunogenicity, the high cost of clinical-grade recombinant viral vectors and potential insertional mutagenesis limit their clinical application. METHODS: CD133-specific CAR-T cells secreting PD-1 blocking scFv (CD133 CAR-T and PD-1 s cells) were constructed using a sleeping beauty transposon system from minicircle technology, and the antitumour efficacy of CD133 CAR-T and PD-1 s cells was analysed in vitro and in vivo. RESULTS: A univariate analysis showed that CD133 expression in male patients at the late stage (II and III) was significantly associated with worse progression-free survival (PFS) (P = 0.0057) and overall survival (OS) (P = 0.015), and a multivariate analysis showed a trend toward worse OS (P = 0.041). Male patients with advanced HCC exhibited an approximately 20-fold higher PD-L1 combined positive score (CPS) compared with those with HCC at an early stage. We successfully generated CD133 CAR-T and PD-1 s cells that could secrete PD-1 blocking scFv based on a sleeping beauty system involving minicircle vectors. CD133 CAR-T and PD-1 s cells exhibited significant antitumour activity against HCC in vitro and in xenograft mouse models. Thus, CD133 CAR-T and PD-1 s cells may be a therapeutically tractable strategy for targeting CD133-positive CSCs in male patients with advanced HCC. CONCLUSIONS: Our study provides a nonviral strategy for constructing CAR-T cells that could also secrete checkpoint blockade inhibitors based on a Sleeping Beauty system from minicircle vectors and revealed a potential benefit of this strategy for male patients with advanced HCC and high CD133 expression (median immunohistochemistry score > 2.284).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Humanos , Masculino , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Modelos Animais de Doenças , Linfócitos T
5.
Clin Transl Med ; 13(5): e1247, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37132170

RESUMO

BACKGROUND: In the past decade, the field of tumour immunotherapy has made a great progress. However, the efficacy of immune checkpoint blocking (ICB) in the treatment of hepatocellular carcinoma (HCC) remains limited. Cytotoxic lymphocyte trafficking into tumours is critical for the success of ICB. Therefore, additional strategies that increase cytotoxic lymphocyte trafficking into tumours are urgently needed to improve patient immune responses. METHODS: Paired adjacent tissue and cancerous lesions with HBV-associated HCC were subjected to RNA-seq analysis. Bone morphogenetic protein (BMP9), which reflects vessel normalisation, was identified through Cytoscape software, clinical specimens and Gene Expression Omnibus (GEO) datasets for HCC. The functional effects and mechanism of BMP9 on the tumour vasculature were evaluated in cells and animals. An ultrasound-targeted microbubble destruction (UTMD)-mediated BMP9 delivery strategy was used to normalise the vasculature and evaluate therapeutic efficacy mediated by cytotoxic lymphocytes (NK cells) in combination with a PD-L1 antibody in human cancer xenografts of immune-deficient mice. RESULTS: We discovered that hepatitis B virus (HBV) infection-induced downregulation of BMP9 expression correlated with a poor prognosis and pathological vascular abnormalities in patients with HCC. BMP9 overexpression in HBV-infected HCC cells promoted intra-tumoural cytotoxic lymphocyte infiltration via vascular normalisation by inhibiting the Rho-ROCK-myosin light chain (MLC) signalling cascade, resulting in enhanced efficacy of immunotherapy. Furthermore, UTMD-mediated BMP9 delivery restored the anti-tumour function of cytotoxic lymphocytes (NK cells) and showed therapeutic efficacy in combination with a PD-L1 antibody in human cancer xenografts of immune-deficient mice. CONCLUSIONS: HBV-induced BMP9 downregulation causes vascular abnormalities that inhibit intra-tumoural cytotoxic lymphocyte infiltration, providing a rationale for developing and combining immunotherapy with BMP9-based therapy to treat HBV-associated HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antineoplásicos/uso terapêutico , Antígeno B7-H1 , Proteínas Morfogenéticas Ósseas/uso terapêutico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Hepatite B/complicações , Vírus da Hepatite B/genética , Imunoterapia/métodos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico
6.
Int J Biol Sci ; 18(14): 5241-5259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147467

RESUMO

The imbalance of kinetochore-microtubule attachment during cell mitosis is a response to the initiation and progression of human cancers. Spindle component 25 (SPC25) is indispensable for spindle apparatus organization and chromosome segregation. SPC25 plays an important role in the development of malignant tumors, but its role in hepatocellular carcinoma (HCC) is yet to be determined. In this study, we aimed to preliminarily investigate the role of SPC25 in HCC progression and the molecular mechanisms underlying the process. We identified SPC25 as a clinically notable molecule significantly correlated with the grade of malignancy and poor survival in both The Cancer Genome Atlas (TCGA) cohort and the HCC patient cohort from our center. Mechanistically, SPC25 promoted the incidence of DNA damage and activated the DNA-PK/Akt/Notch1 signaling cascade in HCC cells; the NICD/ RBP-Jκ complex directly targeted SOX2 and NANOG in a transcriptional manner to regulate the proliferation and self-renewal of HCC cells. Our study suggests that HCC-intrinsic SPC25/DNA-PK/Akt/Notch1 signaling is an important mechanism to promote carcinogenesis by regulating the proliferation and stemness program, which provides possible biomarkers for predicting HCC progression and poor survival, as well as potential therapeutic targets for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Associadas aos Microtúbulos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/genética
7.
J Oncol ; 2022: 1587365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942409

RESUMO

Objective: Rare research of renal cell carcinoma (RCC) has been made in a comprehensive and full description based on a long period of time as yet. This study was aimed at investigating the incidence and relative survival rates (RSRs) of RCC in the past forty years and to disclose the impact of sex, race, and socioeconomic status (SES) on RCC. Methods: The data as variables, including age, gender, race, and SES, were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. SES was divided into three levels: low poverty, medium poverty, and high poverty. The medium- and high-poverty groups were integrated into one group in all analyses. The RSRs were calculated using period analysis methodology. Summary statistics including incidence and RSRs were analyzed by Kaplan-Meier and Cox proportional hazards models with GraphPad Prism 8.0.1 software and Stata 12.0 software. Results: A total of 77,513 patients diagnosed with RCC were enrolled in this study, showing an increased incidence and 10-year RSRs from 1977 to 2016. Patients older than 60 years had the highest incidence and the lowest RSRs. This research also showed significant disparities between different groups: incidence in males, blacks, and medium-high poverty groups was higher than that in females, whites, and low poverty groups, while RSRs were lower. For sex groups, the disparity of RSRs was obvious among patients who were 30-59 years old, but not among those younger than 29 years or older than 60 years. Based on SES, the survival gaps between different SES groups were getting wider over the past forty years. Conclusion: This study showed how age, sex, race, and SES affected the incidence and RSRs of RCC, which may be beneficial for both better designed clinical trials and efficient prevention methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA