Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077416

RESUMO

Background: Spodoptera litura (tobacco caterpillar, S. litura) is a pest of great economic importance due to being a polyphagous and world-distributed agricultural pest. However, agricultural practices involving chemical pesticides have caused resistance, resurgence, and residue problems, highlighting the need for new, environmentally friendly methods to control the spread of S. litura. Aim: This study aimed to investigate the gut poisoning of grayanotoxin I, an active compound found in Pieris japonica, on S. litura, and to explore the underlying mechanisms of these effects. Methods: S. litura was cultivated in a laboratory setting, and their survival rate, growth and development, and pupation time were recorded after grayanotoxin I treatment. RNA-Seq was utilized to screen for differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the functions of these DEGs. ELISA was employed to analyze the levels of lipase, 3-hydroxyacyl-CoA dehydrogenase (HOAD), and acetyl-CoA carboxylase (ACC). Hematoxylin and Eosin (H & E) staining was used to detect the development of the fat body. Results: Grayanotoxin I treatment significantly suppressed the survival rate, growth and development, and pupation of S. litura. RNA-Seq analysis revealed 285 DEGs after grayanotoxin I exposure, with over 16 genes related to lipid metabolism. These 285 DEGs were enriched in the categories of cuticle development, larvae longevity, fat digestion and absorption. Grayanotoxin I treatment also inhibited the levels of FFA, lipase, and HOAD in the hemolymph of S. litura. Conclusion: The results of this study demonstrated that grayanotoxin I inhibited the growth and development of S. litura. The mechanisms might, at least partly, be related to the interference of lipid synthesis, lipolysis, and fat body development. These findings provide valuable insights into a new, environmentally-friendly plant-derived insecticide, grayanotoxin I, to control the spread of S. litura.


Assuntos
Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Animais , Spodoptera , Metabolismo dos Lipídeos/genética , Perfilação da Expressão Gênica/métodos , Lipase/farmacologia
2.
Angew Chem Int Ed Engl ; 62(50): e202315621, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37902435

RESUMO

Electrochemical CO2 reduction reaction (CO2 RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2 H4 ). However, achieving high C2 H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2 RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2 H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2 H4 with a current density of 497.2 mA cm-2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4 . The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2 RR. Furthermore, theoretical calculations demonstrate that the Cuδ+ /Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2 H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.

3.
Front Pharmacol ; 14: 1166022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465523

RESUMO

The purpose of this experiment was to investigate the effects of Litsea cubeba essential oil (LCO) on the growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora in fattening pigs. A total of 120 pigs were randomly assigned to five groups, with six replicate pens per treatment and four pigs per pen, and they were fed basal diet, chlortetracycline (CTC), and low-, medium-, and high-concentration LCO. The results of the study showed that compared with the control treatment and CTC addition treatment of the basic diet, the catalase level in the serum of the pigs treated with 500 mg/kg LCO in the diet of finishing pigs was significantly increased (p < 0.05). The apparent digestibility of crude protein, crude ash, and calcium in pigs with different levels of LCO was significantly increased compared with the control treatments fed the basal diet (p < 0.05). In addition, compared with the control treatment fed the basal diet and the treatment with CTC, the apparent digestibility of ether extract in pigs treated with medium-dose LCO was significantly increased (p < 0.05), and the apparent digestibility of pigs was significantly increased after the addition of low-dose LCO (p < 0.05). Among the genera, the percentage abundance of SMB53 (p < 0.05) was decreased in the feces of the CTC group when compared to that in the medium-LCO group. At the same time, the relative abundance of L7A_E11 was markedly decreased in the feces of the control and medium- and high-concentration LCO group than that in the CTC group (p < 0.05). In conclusion, adding the level of 250 mg/kg LCO in the diet of pig could improve the growth performance and blood physiological and biochemical indicators of pigs, improve the antioxidant level of body and the efficiency of digestion and absorption of nutrients, and show the potential to replace CTC.

4.
J Am Chem Soc ; 145(22): 12193-12205, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37208802

RESUMO

Selenoprotein plays a crucial role in immune cells and inflammatory regulation. However, as a protein drug that is easily denatured or degraded in the acidic environment of the stomach, efficient oral delivery of selenoprotein is a great challenge. Herein, we innovated an oral hydrogel microbeads-based biochemical strategy that can in situ synthesize selenoproteins, therefore bypassing the necessity and harsh conditions for oral protein delivery while effectively generating selenoproteins for therapeutic applications. The hydrogel microbeads were synthesized by coating hyaluronic acid-modified selenium nanoparticles with a protective shell of calcium alginate (SA) hydrogel. We tested this strategy in mice with inflammatory bowel disease (IBD), one of the most representative diseases related to intestinal immunity and microbiota. Our results revealed that hydrogel microbeads-mediated in situ synthesis of selenoproteins could prominently reduce proinflammatory cytokines secretion and mediate immune cells (e.g., reduce neutrophils and monocytes and increase immune regulatory T cells) to effectively relieve colitis-associated symptoms. This strategy was also able to regulate gut microbiota composition (increase probiotics abundance and suppress detrimental communities) to maintain intestinal homeostasis. Considering intestinal immunity and microbiota widely associated with cancers, infections, inflammations, etc., this in situ selenoprotein synthesis strategy might also be possibly applied to broadly tackle various diseases.


Assuntos
Hidrogéis , Microbiota , Animais , Camundongos , Microesferas , Selenoproteínas/metabolismo , Inflamação
5.
Adv Mater ; : e2301770, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964936

RESUMO

T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.

6.
Chem Soc Rev ; 51(12): 4996-5041, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35616098

RESUMO

Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.


Assuntos
Nanomedicina , Neoplasias , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina/métodos , Nanotecnologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia
7.
Adv Drug Deliv Rev ; 185: 114268, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398466

RESUMO

Due to their unique physicochemical characteristics, 2D materials have attracted more and more attention in the biomedicine field. Currently, 2D materials-based nanomedicines have been extensively applied in various diseases including cancer, bacterial infection, tissue engineering, biological protection, neurodegenerative diseases, and cardiovascular disease. Depending on their various characteristics, these 2D nanomedicines exert their therapeutic effect in different ways, showing great clinical application prospects. Herein, we focus on the various biomedical applications of 2D materials-based nanomedicine. The structures and characteristics of several typical 2D nanomaterials with different configurations and their corresponding biomedical applications are first introduced. Then, the potential of 2D nanomedicines on therapeutic and imaging and their biological functionalization are discussed. Furthermore, the therapeutic potentials of 2D nanomedicines in various diseases are also comprehensively summarized. At last, the challenges and perspectives for the advancement of 2D nanomedicines in clinical transformation are outlooks.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanomedicina , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Engenharia Tecidual
8.
Nat Commun ; 13(1): 1413, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301299

RESUMO

Protecting the whole small intestine from radiation-induced intestinal injury during the radiotherapy of abdominal or pelvic solid tumors remains an unmet clinical need. Amifostine is a promising selective radioprotector for normal tissues. However, its oral application in intestinal radioprotection remains challenging. Herein, we use microalga Spirulina platensis as a microcarrier of Amifostine to construct an oral delivery system. The system shows comprehensive drug accumulation and effective radioprotection in the whole small intestine that is significantly superior to free drug and its enteric capsule, preventing the radiation-induced intestine injury and prolonging the survival without influencing the tumor regression. It also shows benefits on the gut microbiota homeostasis and long-term safety. Based on a readily available natural microcarrier, this work presents a convenient oral delivery system to achieve effective radioprotection for the whole small intestine, providing a competitive strategy with great clinical translation potential.


Assuntos
Microbioma Gastrointestinal , Microalgas , Neoplasias , Protetores contra Radiação , Homeostase , Humanos , Intestinos , Neoplasias/tratamento farmacológico , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico
9.
Acta Pharm Sin B ; 12(5): 2206-2223, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35013704

RESUMO

Looking retrospectively at the development of humanity, vaccination is an unprecedented medical landmark that saves lives by harnessing the human immune system. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, vaccination is still the most effective defense modality. The successful clinical application of the lipid nanoparticle-based Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines highlights promising future of nanotechnology in vaccine development. Compared with conventional vaccines, nanovaccines are supposed to have advantages in lymph node accumulation, antigen assembly, and antigen presentation; they also have, unique pathogen biomimicry properties because of well-organized combination of multiple immune factors. Beyond infectious diseases, vaccine nanotechnology also exhibits considerable potential for cancer treatment. The ultimate goal of cancer vaccines is to fully mobilize the potency of the immune system as a living therapeutic to recognize tumor antigens and eliminate tumor cells, and nanotechnologies have the requisite properties to realize this goal. In this review, we summarize the recent advances in vaccine nanotechnology from infectious disease prevention to cancer immunotherapy and highlight the different types of materials, mechanisms, administration methods, as well as future perspectives.

10.
ACS Nano ; 16(1): 485-501, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34962762

RESUMO

The tumor microenvironment (TME) featured by immunosuppression and hypoxia is pivotal to cancer deterioration and metastasis. Thus, regulating the TME to improve cancer cell ablation efficiency has received extensive interest in oncotherapy. However, to reverse the immunosuppression and alleviate hypoxia simultaneously in the TME are major challenges for effective cancer therapy. Herein, a multifunctional platform based on Au nanoparticles and a carbon dots modified hollow black TiO2 nanosphere (HABT-C) with intrinsic cascade enzyme mimetic activities is prepared for reversing immunosuppression and alleviating hypoxia in the TME. The HABT-C NPs possess triple-enzyme mimetic activity to act as self-cascade nanozymes, which produce sufficient oxygen to alleviate hypoxia and generate abundant ROS. The theoretical analysis demonstrates that black TiO2 facilitates absorption of H2O and O2, separation of electron-holes, and generation of ROS, consequently amplifying the sonodynamic therapy (SDT) efficiency. Specifically, HABT-C exhibits favorable inhibition of immunosuppressive mediator expression, along with infiltrating of immune effector cells into the TME and reversing the immunosuppression in the TME. As a result, HABT-C can effectively kill tumor cells via eliciting immune infiltration, alleviating hypoxia, and improving SDT efficiency. This cascade nanozyme-based platform (HABT-C@HA) will provide a strategy for highly efficient SDT against cancer by modulation of hypoxia and immunosuppression in the TME.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Hipóxia , Microambiente Tumoral , Oxigênio/metabolismo , Terapia de Imunossupressão , Linhagem Celular Tumoral
11.
Acta Pharm Sin B ; 11(11): 3447-3464, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34900529

RESUMO

The field of two-dimensional (2D) nanomaterial-based cancer immunotherapy combines research from multiple subdisciplines of material science, nano-chemistry, in particular nano-biological interactions, immunology, and medicinal chemistry. Most importantly, the "biological identity" of nanomaterials governed by bio-molecular corona in terms of bimolecular types, relative abundance, and conformation at the nanomaterial surface is now believed to influence blood circulation time, bio-distribution, immune response, cellular uptake, and intracellular trafficking. A better understanding of nano-bio interactions can improve utilization of 2D nano-architectures for cancer immunotherapy and immunotheranostics, allowing them to be adapted or modified to treat other immune dysregulation syndromes including autoimmune diseases or inflammation, infection, tissue regeneration, and transplantation. The manuscript reviews the biological interactions and immunotherapeutic applications of 2D nanomaterials, including understanding their interactions with biological molecules of the immune system, summarizes and prospects the applications of 2D nanomaterials in cancer immunotherapy.

12.
Small ; 17(47): e2103003, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34561966

RESUMO

Regulation of angiogenesis is a great challenge for effective anticancer therapy. Generally, anti-angiogenic therapies are focused on inhibition of inducers involved in pro-angiogenic communication pathways. Despite the great potential of anti-angiogenic therapy, engineering efficient angiogenesis inhibition agents (AIAs) is still a formidable challenge, since most anti-angiogenic therapies are limited due to the cancer recurrence via compensatory expression of different angiogenic mediators. Herein, we present a new strategy of near-infrared-II (NIR-II) responsive hydrogel AIAs, constructed by incorporation of nitric oxide (NO) precursor (BNN6) and 2D WO2.9 nanosheets within hydrogel (WB@hydrogel). Because of the defect/2D engineering, the bandgap of the WO2.9 nanosheets narrows, which extends the absorption to the NIR-II region. It offers a favorable NIR-II controlled manner for NO generation through irradiation time and light intensity. The continuous supply of NO can activate the expression of wild-type p53 protein and further reverse the transcriptional expression of pro- and anti-angiogenic factors of the tumor microenvironment (TME), subsequently alternating pro-angiogenic TME to anti-angiogenic TME. In the murine tumor model, this method achieved high tumor growth inhibition (TGI) rate and excellent anti-recurrence efficiency.


Assuntos
Hidrogéis , Neoplasias , Animais , Camundongos , Óxido Nítrico , Microambiente Tumoral
13.
Nanomicro Lett ; 13(1): 90, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34138343

RESUMO

Stanene (Sn)-based materials have been extensively applied in industrial production and daily life, but their potential biomedical application remains largely unexplored, which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials. Herein, we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional (2D) Sn nanosheets (SnNSs). The obtained SnNSs exhibited a typical sheet-like structure with an average size of ~ 100 nm and a thickness of ~ 5.1 nm. After PEGylation, the resulting PEGylated SnNSs (SnNSs@PEG) exhibited good stability, superior biocompatibility, and excellent photothermal performance, which could serve as robust photothermal agents for multi-modal imaging (fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer. Furthermore, we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs, revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal. This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics. This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.

14.
Angew Chem Int Ed Engl ; 60(13): 7155-7164, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33434327

RESUMO

Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a superior modality for cancer treatment owing to the non-invasiveness and high tissue-penetrating depth. However, developing biocompatible nanomaterial-based sonosensitizers with efficient SDT capability remains challenging. Here, we employed a liquid-phase exfoliation strategy to obtain a new type of two-dimensional (2D) stanene-based nanosheets (SnNSs) with a band gap of 2.3 eV, which is narrower than those of the most extensively studied nano-sonosensitizers, allowing a more efficient US-triggered separation of electron (e- )-hole (h+ ) pairs for reactive oxygen species (ROS) generation. In addition, we discovered that such SnNSs could also serve as robust near-infrared (NIR)-mediated photothermal therapy (PTT) agents owing to their efficient photothermal conversion, and serve as nanocarriers for anticancer drug delivery owing to the inherent 2D layered structure. This study not only presents general nanoplatforms for SDT-enhanced combination cancer therapy, but also highlights the utility of 2D SnNSs to the field of nanomedicine.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/terapia , Terapia Fototérmica , Sesquiterpenos/química , Terapia por Ultrassom , Terapia Combinada , Portadores de Fármacos/química , Humanos , Estrutura Molecular , Nanomedicina , Neoplasias/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Ondas Ultrassônicas
15.
Proc Natl Acad Sci U S A ; 117(46): 28667-28677, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139557

RESUMO

The treatment of diabetic ulcer (DU) remains a major clinical challenge due to the complex wound-healing milieu that features chronic wounds, impaired angiogenesis, persistent pain, bacterial infection, and exacerbated inflammation. A strategy that effectively targets all these issues has proven elusive. Herein, we use a smart black phosphorus (BP)-based gel with the characteristics of rapid formation and near-infrared light (NIR) responsiveness to address these problems. The in situ sprayed BP-based gel could act as 1) a temporary, biomimetic "skin" to temporarily shield the tissue from the external environment and accelerate chronic wound healing by promoting the proliferation of endothelial cells, vascularization, and angiogenesis and 2) a drug "reservoir" to store therapeutic BP and pain-relieving lidocaine hydrochloride (Lid). Within several minutes of NIR laser irradiation, the BP-based gel generates local heat to accelerate microcirculatory blood flow, mediate the release of loaded Lid for "on-demand" pain relief, eliminate bacteria, and reduce inflammation. Therefore, our study not only introduces a concept of in situ sprayed, NIR-responsive pain relief gel targeting the challenging wound-healing milieu in diabetes but also provides a proof-of-concept application of BP-based materials in DU treatment.


Assuntos
Pé Diabético/terapia , Fósforo/administração & dosagem , Terapia Fototérmica , Materiais Inteligentes/administração & dosagem , Cicatrização/efeitos dos fármacos , Anestésicos Locais/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Fibrinogênio/administração & dosagem , Géis , Células Endoteliais da Veia Umbilical Humana , Humanos , Lidocaína/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Trombina/administração & dosagem
16.
Nat Commun ; 11(1): 2778, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513979

RESUMO

The use of photothermal agents (PTAs) in cancer photothermal therapy (PTT) has shown promising results in clinical studies. The rapid degradation of PTAs may address safety concerns but usually limits the photothermal stability required for efficacious treatment. Conversely, PTAs with high photothermal stability usually degrade slowly. The solutions that address the balance between the high photothermal stability and rapid degradation of PTAs are rare. Here, we report that the inherent Cu2+-capturing ability of black phosphorus (BP) can accelerate the degradation of BP, while also enhancing photothermal stability. The incorporation of Cu2+ into BP@Cu nanostructures further enables chemodynamic therapy (CDT)-enhanced PTT. Moreover, by employing 64Cu2+, positron emission tomography (PET) imaging can be achieved for in vivo real-time and quantitative tracking. Therefore, our study not only introduces an "ideal" PTA that bypasses the limitations of PTAs, but also provides the proof-of-concept application of BP-based materials in PET-guided, CDT-enhanced combination cancer therapy.


Assuntos
Cobre/química , Hipertermia Induzida , Neoplasias/terapia , Fósforo/química , Fototerapia , Tomografia por Emissão de Pósitrons , Animais , Morte Celular , Linhagem Celular Tumoral , Terapia Combinada , Cobre/farmacocinética , Humanos , Íons , Camundongos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oligopeptídeos/química , Fósforo/farmacocinética , Polietilenoglicóis/química , Espectrofotometria Ultravioleta , Nanomedicina Teranóstica
17.
EBioMedicine ; 56: 102821, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32505922

RESUMO

The rapid development of nanotechnology results in the emergence of nanomedicines, but the effective delivery of drugs to tumor sites remains a great challenge. Prodrug-based cancer nanomedicines thus emerged due to their unique advantages, including high drug load efficiency, reduced side effects, efficient targeting, and real-time controllability. A distinctive characteristic of prodrug-based nanomedicines is that they need to be activated by a stimulus or multi-stimulus to produce an anti-tumor effect. A better understanding of various responsive approaches could allow researchers to perceive the mechanism of prodrug-based nanomedicines effectively and further optimize their design strategy. In this review, we highlight the stimuli-responsive pathway of prodrug-based nanomedicines and their anticancer applications. Furthermore, various types of prodrug-based nanomedicines, recent progress and prospects of stimuli-responsive prodrug-based nanomedicines and patient data in the clinical application are also summarized. Additionally, the current development and future challenges of prodrug-based nanomedicines are discussed. We expect that this review will be valuable for readers to gain a deeper understanding of the structure and development of prodrug-based cancer nanomedicines to design rational and effective drugs for clinical use.


Assuntos
Nanopartículas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Estresse Oxidativo , Pró-Fármacos/química
18.
ACS Appl Mater Interfaces ; 12(1): 288-297, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31834761

RESUMO

Developing highly efficient chemodynamic therapy (CDT)-based theranostic technology for cancer treatment is highly desired but still challenging. A novel nanotheranostic platform is constructed for enhanced CDT by engineering hybrid CaO2 and Fe3O4 nanoparticles with a hyaluronate acid (HA) stabilizer and NIR fluorophore label. This design not only enables the nanotheranostic agent to afford highly efficient CDT against tumor cells but also confers NIR fluorescence (NIRF) and magnetic resonance (MR) bimodal imaging for in vivo visualization of CDT. Moreover, the use of the HA stabilizer allows for the facile synthesis of the nanotheranostic agent with excellent biocompatibility and active targetability. The nanotheranaostic agent possesses a high capacity of self-supplying H2O2 and producing •OH in acidic conditions, while retaining the desired stability under physiological conditions. It also demonstrates high selectivity to tumor cells via CDT with minimized toxicity to normal cells. In vivo studies reveal that our nanotheranaostic agent exhibits efficacious tumor growth inhibition via a CDT mechanism with favorable biosafety. Moreover, in vivo visualization of the CDT progress via NIRF and MR bimodal imaging demonstrates specific targeting and treatment of tumors. The developed H2O2 self-supplying, active targeting, and bimodal imaging nanotheranostic platform holds the potential as a highly efficient strategy for CDT of cancer.


Assuntos
Compostos de Cálcio , Óxido Ferroso-Férrico , Peróxido de Hidrogênio/metabolismo , Nanopartículas , Neoplasias Experimentais/tratamento farmacológico , Óxidos , Fotoquimioterapia , Animais , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Linhagem Celular Tumoral , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Óxidos/química , Óxidos/farmacologia , Nanomedicina Teranóstica , Microambiente Tumoral/efeitos dos fármacos
19.
Adv Sci (Weinh) ; 6(19): 1901211, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31592423

RESUMO

Biotite, also called black mica (BM), is a group of sheet silicate minerals with great potential in various fields. However, synthesis of high-quality BM nanosheets (NSs) remains a huge challenge. Here, an exfoliation approach is provided that combines calcination, n-butyllithium exchange and intercalation, and liquid exfoliating processes for the high-yield synthesis of ultrathin BM NSs. Due to the presence of MgO, Fe2O3, and FeO in these NSs, PEGylated BM can be engineered as an intelligent theranostic platform with the following unique features: i) Fe3+ can damage the tumor microenvironment (TME) through glutathione consumption and O2 production; ii) Generated O2 can be further catalyzed by MgO with oxygen vacancy to generate ·O2 -; iii) The Fe2+-catalyzed Fenton reaction can produce ·OH by disproportionation reactions of H2O2 in the TME; iv) Reactions in (i) and (iii) circularly regenerate Fe2+ and Fe3+ for continuous consumption of glutathione and H2O2 and constant production of ·OH and O2; v) The NSs can be triggered by a 650 nm laser to generate ·O2 - from O2 as well as by an 808 nm laser to generate local hyperthermia; and vi) The fluorescent, photoacoustic, and photothermal imaging capabilities of the engineered NSs allow for multimodal imaging-guided breast cancer treatment.

20.
Angew Chem Int Ed Engl ; 58(48): 17425-17432, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31552695

RESUMO

Current cancer therapy is seriously challenged by tumor metastasis and recurrence. One promising solution to these problems is to build antitumor immunity. However, immunotherapeutic efficacy is highly impeded by the immunosuppressive state of the tumors. Here a new strategy is presented, catalytic immunotherapy based on artificial enzymes. Cu2-x Te nanoparticles exhibit tunable enzyme-mimicking activity (including glutathione oxidase and peroxidase) under near-infrared-II (NIR-II) light. The cascade reactions catalyzed by the Cu2-x Te artificial enzyme gradually elevates intratumor oxidative stress to induce immunogenic cell death. Meanwhile, the continuously generated oxidative stress by the Cu2-x Te artificial enzyme reverses the immunosuppressive tumor microenvironment, and boosts antitumor immune responses to eradicate both primary and distant metastatic tumors. Moreover, immunological memory effect is successfully acquired after treatment with the Cu2-x Te artificial enzyme to suppress tumor relapse.


Assuntos
Antineoplásicos/química , Materiais Biomiméticos/química , Cobre/química , Imunossupressores/química , Nanopartículas Metálicas/química , Telúrio/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Imunossupressores/farmacologia , Imunoterapia , Raios Infravermelhos , Cinética , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/química , Peroxidase/química , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA