Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oral Dis ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798926

RESUMO

BACKGROUND: BRD4, belonging to the bromodomain extra-terminal (BET) protein family, plays a unique role in tumor progression. However, the potential impact of BRD4 in ameloblastoma (AM) remains largely unknown. Herein, we aimed to assess the expression and functional role of BRD4 in AM. METHODS: The expression level of BRD4 was assessed by immunohistochemistry. The proliferation, migration, invasion, and tumorigenic abilities of AM cells were assessed by a series of assays. To explore the molecular expression profile of BRD4-depleted AM cells, RNA sequencing (RNA-seq) was performed. Bioinformatic analysis was performed on AM expression matrices obtained from the Gene Expression Omnibus (GEO). The therapeutic efficacy of BET-inhibitors (BETi) was assessed with AM patient-derived organoids. RESULTS: Upregulation of BRD4 was observed in conventional AMs, recurrent AMs, and ameloblastic carcinomas. Depletion of BRD4 inhibited proliferation, invasion, migration, and tumorigenesis in AM. Administration of BETi attenuated the aggressiveness of AM and the growth of AM patient-derived organoids. Bioinformatic analysis indicated that BRD4 may promote AM progression by regulating the Wnt pathway and stemness-associated pathways. CONCLUSION: BRD4 increases the aggressiveness and promotes the recurrence of ameloblastoma by regulating the Wnt pathway and stemness-associated pathways. These findings highlight BRD4 as a promising therapeutic target in AM management.

2.
Int J Oral Sci ; 15(1): 38, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679344

RESUMO

Pleomorphic adenoma (PA) is the most common benign tumour in the salivary gland and has high morphological complexity. However, the origin and intratumoral heterogeneity of PA are largely unknown. Here, we constructed a comprehensive atlas of PA at single-cell resolution and showed that PA exhibited five tumour subpopulations, three recapitulating the epithelial states of the normal parotid gland, and two PA-specific epithelial cell (PASE) populations unique to tumours. Then, six subgroups of PASE cells were identified, which varied in epithelium, bone, immune, metabolism, stemness and cell cycle signatures. Moreover, we revealed that CD36+ myoepithelial cells were the tumour-initiating cells (TICs) in PA, and were dominated by the PI3K-AKT pathway. Targeting the PI3K-AKT pathway significantly inhibited CD36+ myoepithelial cell-derived tumour spheres and the growth of PA organoids. Our results provide new insights into the diversity and origin of PA, offering an important clinical implication for targeting the PI3K-AKT signalling pathway in PA treatment.


Assuntos
Adenoma Pleomorfo , Mioepitelioma , Humanos , Adenoma Pleomorfo/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transcriptoma
3.
Front Oncol ; 12: 900108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185257

RESUMO

Background: FOSL1, a key component of the Activating protein-1 (AP-1) transcriptional complex, plays an important role in cancer cell migration, invasion, and proliferation. However, the impact of FOSL1 in ameloblastoma (AM) has not been clarified. Herein, we aimed to assess the expression of FOSL1 and investigate its functional role in AM. Methods: The expression of FOSL1 was examined based on an immunohistochemistry analysis of 96 AM samples. Cell proliferation, migration, invasion, and tumorigenesis were assessed using Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays. RNA sequencing (RNA-seq) was employed to investigate the molecular alterations of AM cells upon FOSL depletion. Microarrays of AMs were downloaded from the Gene Expression Omnibus (GEO) database for bioinformatics analysis. In addition, patient-derived AM organoids were used to evaluate the therapeutic value of the AP-1 inhibitor. Results: FOSL1 was detected in the nuclei of AMs and upregulated in conventional AMs compared to unicystic AMs and normal oral epithelium. Compared with primary AM, FOSL1 expression was significantly increased in recurrent AM. Genetic knockdown of FOSL1 suppressed the proliferation, migration, invasion, and sphere formation of AMs. Similar results were also observed by pharmacological inhibition of AP-1 activity. Moreover, the AP-1 inhibitor T5224 impeded the growth of organoids derived from AM patients. Mechanistically, our Ingenuity Pathway Analysis (IPA) and gene set enrichment analysis (GSEA) results revealed that depletion of FOSL1 inactivated kinetochore metaphase signaling and the epithelial-mesenchymal transition pathway and then impaired the aggressiveness of AM cells accordingly. Conclusion: FOSL1 promotes tumor recurrence and invasive growth in AM by modulating kinetochore metaphase signaling and the epithelial-mesenchymal transition pathway; thus, it represents a promising therapeutic target for AM treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA