Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 453: 131421, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080031

RESUMO

Atmospheric deposition is an essential cadmium (Cd) pollution source in agricultural ecosystems, entering crops via roots and leaves. In this study, atmospherically deposited Cd was simulated using cadmium sulfide nanoparticles (CdSN), and chili (Capsicum frutescens L.) was used to conduct a comparative foliar and root experiment. Root and foliar uptake significantly increased the Cd content of chili tissues as well as the subcellular Cd content. Scanning electron microscopy and high-resolution secondary ion mass spectrometry showed that Cd that entered the leaves via stomata was fixed in leaf cells, and the rest was mainly through phloem transport to the other organs. In leaf, stem, and root cell walls, Cd signal intensities were 47.4%, 72.2%, and 90.0%, respectively. Foliar Cd uptake significantly downregulated purine metabolism in leaves, whereas root Cd uptake inhibited stilbenoid, diarylheptanoid, and gingerol biosynthesis in roots. Root uptake contributed 90.4% Cd in fruits under simultaneous root and foliar uptake conditions attributed to xylem and phloem involvement in Cd translocation. Moreover, root uptake had a more significant effect on fruit metabolic pathways than foliar uptake. These findings are critical for choosing pollution control technologies and ensuring food security.


Assuntos
Cádmio , Poluentes do Solo , Ecossistema , Metabolômica , Transporte Biológico , Agricultura , Folhas de Planta , Raízes de Plantas
2.
J Environ Manage ; 330: 117136, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584474

RESUMO

The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored. The synergistic effect of the BC-FH composite significantly improved its Cd adsorption capacity. The adsorption efficiencies of BC-FH and BC-GT increased by 15.0% and 10.8%, respectively, compared with that of uncombined BC, FH, and GT. The strong Cd adsorption by BC-FH was attributed to stable interactions and stereoscopic pore filling between BC and FH. The scanning electron microscopy results showed that FH particles entered the BC pores, whereas GT particles were loaded onto the BC surface. FTIR spectroscopy showed that GT covered a larger area of the BC surface than FH. After loading FH and GT, BC porosities decreased by 9.3% and 4.1%, respectively. Quantum chemical calculations and independent gradient mode analysis showed that van der Waals interactions, H-bonds, and covalent-like interactions maintained stability between iron minerals and BC. Additionally, humic acid increased the agglomeration of iron oxides and formed larger particles, causing additional aggregates to load onto the BC surface instead of entering the BC pores. Our results provide theoretical support to reveal the interfacial behavior of BC-iron mineral composites in soil and provide a reference for field applications of these materials for pollution control and environmental remediation.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/química , Ferro/química , Minerais/química , Carvão Vegetal/química , Adsorção , Óxidos/química , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 431: 128624, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278953

RESUMO

Atmospherically deposited cadmium (Cd) may accumulate in plants through foliar uptake; however, the foliar uptake, accumulation, and distribution processes of Cd are still under discussion. Atmospherically deposited Cd was simulated using cadmium sulfide (CdS) with various particle sizes and solubility. Water spinach (Ipomoea aquatica Forsk, WS) and pak choi (Brassica chinensis L., PC) leaves were treated with suspensions of CdS nanoparticles (CdSN), which entered the leaves via the stomata. Cd concentrations of WS and PC leaves treated with 125 mg L-1 CdSN reached up to 39.8 and 11.0 mg kg-1, respectively, which are higher than the critical leaf concentration for toxicity. Slight changes were observed in fresh biomass, photosynthetic parameters, lipid peroxidation, and mineral nutrient uptake. Exposure concentration, rather than particle size or solubility, regulated the foliar uptake and accumulation of Cd. Subcellular and the high-resolution secondary ion mass spectrometry (NanoSIMS) results revealed that Cd was majorly stored in the soluble fraction and cell walls, which is an important Cd detoxification mechanism in leaves. The potential health risks associated with consuming CdS-containing vegetables were highlighted. These findings facilitate a better understanding of the fate of atmospheric Cd in plants, which is critical in ensuring food security.


Assuntos
Brassica , Ipomoea , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Folhas de Planta/química , Poluentes do Solo/análise , Verduras
4.
Environ Sci Pollut Res Int ; 27(29): 36377-36390, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32562227

RESUMO

The consumption of agricultural products grown on paddy soils contaminated with toxic element has a detrimental effect on human health. However, the processes and mechanisms of iron (Fe) mineral-associated arsenic (As) availability and As reactivity in different paddy soil profiles are not well understood. In this study, the fractions, immobilization, and release risk of As in eleven soil profiles from the Changzhutan urban agglomeration in China were investigated; these studied soils were markedly contaminated with As. Sequential extraction experiments were used to analyze fractions of As and Fe oxide minerals, and kinetic experiments were used to characterize the reactivity of Fe oxide minerals. The results showed that concentrations of total As and As fractions had a downward trend with depth, but the average proportions of As fractions only showed relatively small changes, which implied that the decrease in the total As concentrations influenced the changes in fraction concentrations along the sampling depth. Moreover, we found that easily reducible Fe (Feox1) mainly controlled the reductive dissolution of the Fe oxides, which suggest that the reductive dissolution process could potentially release As during the flooded period of rice production. In addition, a high proportion of As was specifically absorbed As (As-F2) (average 20.4%) in paddy soils, higher than that in other soils. The total organic carbon (TOC) content had a positive correlation with the amount of non-specifically bound As (As-F1) (R = 0.56), which means that TOC was one factor that affected the As extractability in the As-F1. Consequently, high inputs of organic fertilizers may elevate the release of As and accelerate the diffusion of As. Graphical abstract.


Assuntos
Arsênio/análise , Oryza , Poluentes do Solo/análise , China , Compostos Férricos , Minerais , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA