Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 26(1): 11, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167740

RESUMO

Inhibiting MerTK on macrophages is a promising therapeutic strategy for augmenting anti-tumor immunity. However, blocking MerTK on retinal pigment epithelial cells (RPEs) results in retinal toxicity. Bispecific antibodies (bsAbs) containing an anti-MerTK therapeutic and anti-PD-L1 targeting arm were developed to reduce drug binding to MerTK on RPEs, since PD-L1 is overexpressed on macrophages but not RPEs. In this study, we present a modeling framework using in vitro receptor occupancy (RO) and pharmacokinetics (PK) data to predict efficacy, toxicity, and therapeutic index (TI) of anti-MerTK bsAbs. We first used simulations and in vitro RO data of anti-MerTK monospecific antibody (msAb) to estimate the required MerTK RO for in vivo efficacy and toxicity. Using these estimated RO thresholds, we employed our model to predict the efficacious and toxic doses for anti-MerTK bsAbs with varying affinities for MerTK. Our model predicted the highest TI for the anti-MerTK/PD-L1 bsAb with an attenuated MerTK binding arm, which was consistent with in vivo efficacy and toxicity observations. Subsequently, we used the model, in combination with sensitivity analysis and parameter scans, to suggest an optimal molecular design of anti-MerTK bsAb with the highest predicted TI in humans. Our prediction revealed that this optimized anti-MerTK bsAb should contain a MerTK therapeutic arm with relatively low affinity, along with a high affinity targeting arm that can bind to a low abundance target with slow turnover rate. Overall, these results demonstrated that our modeling framework can guide the rational design of bsAbs.


Assuntos
Anticorpos Biespecíficos , Humanos , Antígeno B7-H1 , c-Mer Tirosina Quinase
2.
AAPS J ; 24(6): 100, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127472

RESUMO

RO7297089, an anti-B-cell maturation antigen (BCMA)/CD16A bispecific tetravalent antibody, is being developed as a multiple myeloma (MM) therapeutic. This study characterized nonclinical pharmacokinetics (PK), pharmacodynamics (PD), soluble BCMA (sBCMA), and soluble CD16 (sCD16) changes following administration of RO7297089 to support clinical trials. Unbound and total RO7297089 concentrations were measured in cynomolgus monkeys. RO7297089 exhibited a bi-phasic systemic concentration-time profile, similar to a typical human immunoglobulin 1 antibody. Target engagement by RO7297089 led to a robust increase (~100-fold) in total systemic sBCMA levels and relatively mild increase (~2-fold) in total sCD16 levels. To describe the relationship of nonclinical PK/PD data, we developed a target-mediated drug disposition (TMDD) model that includes the systemic target engagement of membrane BCMA (mBCMA), sBCMA, membrane CD16 (mCD16), and sCD16. We then used this model to simulate the PK/PD relationship of RO7297089 in MM patients by translating relevant PK parameters and target levels, based on the literature and newly generated data such as baseline sCD16A levels. Our model suggested that the impact of TMDD on RO7297089 exposure may be more significant in MM patients due to significantly higher expression levels of both mBCMA and sBCMA compared to healthy cynomolgus monkeys. Based on model simulations, we propose more frequent dosing of RO7297089 compared to regular monthly frequency in the clinic at the beginning of treatment to ensure sustained target engagement. This study demonstrates a translational research strategy for collecting relevant nonclinical data, establishing a TMDD model, and using simulations from this model to inform clinical dose regimens.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Imunoterapia , Macaca fascicularis , Mieloma Múltiplo/tratamento farmacológico
3.
Pharmaceutics ; 14(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631556

RESUMO

The T cell-dependent bispecific (TDB) antibody, anti-CD79b/CD3, targets CD79b and CD3 cell-surface receptors expressed on B cells and T cells, respectively. Since the anti-CD79b arm of this TDB binds only to human CD79b, a surrogate TDB that binds to cynomolgus monkey CD79b (cyCD79b) was used for preclinical characterization. To evaluate the impact of CD3 binding affinity on the TDB pharmacokinetics (PK), we utilized non-tumor-targeting bispecific anti-gD/CD3 antibodies composed of a low/high CD3 affinity arm along with a monospecific anti-gD arm as controls in monkeys and mice. An integrated PKPD model was developed to characterize PK and pharmacodynamics (PD). This study revealed the impact of CD3 binding affinity on anti-cyCD79b/CD3 PK. The surrogate anti-cyCD79b/CD3 TDB was highly effective in killing CD79b-expressing B cells and exhibited nonlinear PK in monkeys, consistent with target-mediated clearance. A dose-dependent decrease in B cell counts in peripheral blood was observed, as expected. Modeling indicated that anti-cyCD79b/CD3 TDB's rapid and target-mediated clearance may be attributed to faster internalization of CD79b, in addition to enhanced CD3 binding. The model yielded unbiased and precise curve fits. These findings highlight the complex interaction between TDBs and their targets and may be applicable to the development of other biotherapeutics.

4.
Mol Cancer Ther ; 21(6): 974-985, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364611

RESUMO

New therapeutics and combination regimens have led to marked clinical improvements for the treatment of a subset of colorectal cancer. Immune checkpoint inhibitors have shown clinical efficacy in patients with mismatch-repair-deficient or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). However, patients with microsatellite-stable (MSS) or low levels of microsatellite instable (MSI-L) colorectal cancer have not benefited from these immune modulators, and the survival outcome remains poor for the majority of patients diagnosed with mCRC. In this article, we describe the discovery of a novel T-cell-dependent bispecific antibody (TDB) targeting tumor-associated antigen LY6G6D, LY6G6D-TDB, for the treatment of colorectal cancer. RNAseq analysis showed that LY6G6D was differentially expressed in colorectal cancer with high prevalence in MSS and MSI-L subsets, whereas LY6G6D expression in normal tissues was limited. IHC confirmed the elevated expression of LY6G6D in primary and metastatic colorectal tumors, whereas minimal or no expression was observed in most normal tissue samples. The optimized LY6G6D-TDB, which targets a membrane-proximal epitope of LY6G6D and binds to CD3 with high affinity, exhibits potent antitumor activity both in vitro and in vivo. In vitro functional assays show that LY6G6D-TDB-mediated T-cell activation and cytotoxicity are conditional and target dependent. In mouse xenograft tumor models, LY6G6D-TDB demonstrates antitumor efficacy as a single agent against established colorectal tumors, and enhanced efficacy can be achieved when LY6G6D-TDB is combined with PD-1 blockade. Our studies provide evidence for the therapeutic potential of LY6G6D-TDB as an effective treatment option for patients with colorectal cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias Colorretais , Imunoglobulinas , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoglobulinas/imunologia , Camundongos , Instabilidade de Microssatélites , Linfócitos T/imunologia
5.
AAPS J ; 24(1): 7, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862519

RESUMO

CD3-bispecific antibodies are a new class of immunotherapeutic drugs against cancer. The pharmacological activity of CD3-bispecifics is typically assessed through in vitro assays of cancer cell lines co-cultured with human peripheral blood mononuclear cells (PBMCs). Assay results depend on experimental conditions such as incubation time and the effector-to-target cell ratio, which can hinder robust quantification of pharmacological activity. In order to overcome these limitations, we developed a new, holistic approach for quantification of the in vitro dose-response relationship. Our experimental design integrates a time-independent analysis of the dose-response across different time points as an alternative to the static, "snap-shot" analysis based on a single time point commonly used in dose-response assays. We show that the potency values derived from static in vitro experiments depend on the incubation time, which leads to inconsistent results across multiple assays and compounds. We compared the potency values from the time-independent analysis with a model-based approach. We find comparably accurate potency estimates from the model-based and time-independent analyses and that the time-independent analysis provides a robust quantification of pharmacological activity. This approach may allow for an improved head-to-head comparison of different compounds and test systems and may prove useful for supporting first-in-human dose selection.


Assuntos
Anticorpos Biespecíficos , Linfócitos T , Anticorpos Biespecíficos/farmacologia , Complexo CD3 , Análise de Dados , Humanos , Leucócitos Mononucleares
6.
Mol Cancer Ther ; 20(4): 716-725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536191

RESUMO

Ovarian cancer is a diverse class of tumors with very few effective treatment options and suboptimal response rates in early clinical studies using immunotherapies. Here we describe LY6/PLAUR domain containing 1 (LYPD1) as a novel target for therapeutic antibodies for the treatment of ovarian cancer. LYPD1 is broadly expressed in both primary and metastatic ovarian cancer with ∼70% prevalence in the serous cancer subset. Bispecific antibodies targeting CD3 on T cells and a tumor antigen on cancer cells have demonstrated significant clinical activity in hematologic cancers. We have developed an anti-LYPD1/CD3 T-cell-dependent bispecific antibody (TDB) to redirect T-cell responses to LYPD1 expressing ovarian cancer. Here we characterize the nonclinical pharmacology of anti-LYPD1/CD3 TDB and show induction of a robust polyclonal T-cell activation and target dependent killing of LYPD1 expressing ovarian cancer cells resulting in efficient in vivo antitumor responses in PBMC reconstituted immune-deficient mice and human CD3 transgenic mouse models. Anti-LYPD1/CD3 TDB is generally well tolerated at high-dose levels in mice, a pharmacologically relevant species, and showed no evidence of toxicity or damage to LYPD1 expressing tissues.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/patologia
7.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271166

RESUMO

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Complexo CD3/química , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Receptor ErbB-2/química
8.
J Pharmacol Exp Ther ; 354(3): 448-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26163548

RESUMO

Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens.


Assuntos
Ácidos Borônicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Pirazinas/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Lógica , Mieloma Múltiplo/metabolismo , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína bcl-X/metabolismo
9.
Toxicol Appl Pharmacol ; 248(3): 165-77, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20659493

RESUMO

Conazoles are a class of azole fungicides used to prevent fungal growth in agriculture, for treatment of fungal infections, and are found to be tumorigenic in rats and/or mice. In this study, cultured primary rat hepatocytes were treated to two different concentrations (0.3 and 0.15 mM) of triadimefon, which is a tumorigenic conazole in rat and mouse liver, on a temporal basis with daily media change. Following treatment, cells were harvested for microarray data ranging from 6 to 72 h. Supernatant was collected daily for three days, and the concentrations of various metabolites in the media and supernatant were quantified. Gene expression changes were most significant following exposure to 0.3 mM triadimefon and were characterized mainly by metabolic pathways related to carbohydrate, lipid and amino acid metabolism. Correspondingly, metabolic network flexibility analysis demonstrated a switch from fatty acid synthesis to fatty acid oxidation in cells exposed to triadimefon. It is likely that fatty acid oxidation is active in order to supply energy required for triadimefon detoxification. In 0.15 mM triadimefon treatment, the hepatocytes are able to detoxify the relatively low concentration of triadimefon with less pronounced changes in hepatic metabolism.


Assuntos
Fungicidas Industriais/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Metabolômica/métodos , Análise Serial de Proteínas/métodos , Transcrição Gênica/genética , Triazóis/toxicidade , Animais , Células Cultivadas , Hepatócitos/fisiologia , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Transcrição Gênica/efeitos dos fármacos , Xenobióticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA