Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 87, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148098

RESUMO

BACKGROUND: Recent studies suggested that genetic variants associated with monogenic bone disorders were involved in the pathogenesis of atypical femoral fractures (AFF). Here, we aim to identify rare genetic variants by whole exome sequencing in genes involved in monogenic rare skeletal diseases in 12 women with AFF and 4 controls without any fracture. RESULTS: Out of 33 genetic variants identified in women with AFF, eleven (33.3%) were found in genes belonging to the Wnt pathway (LRP5, LRP6, DAAM2, WNT1, and WNT3A). One of them was rated as pathogenic (p.Pro582His in DAAM2), while all others were rated as variants of uncertain significance according to ClinVar and ACMG criteria. CONCLUSIONS: Osteoporosis, rare bone diseases, and AFFs may share the same genes, thus making it even more difficult to identify unique risk factors.


Assuntos
Sequenciamento do Exoma , Fraturas do Fêmur , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Feminino , Fraturas do Fêmur/genética , Fraturas do Fêmur/patologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Pessoa de Meia-Idade , Idoso , Predisposição Genética para Doença , Proteína Wnt1/genética , Proteína Wnt3A/genética , Via de Sinalização Wnt/genética , Osteoporose/genética , Osteoporose/patologia , Doenças Ósseas/genética , Estudos de Casos e Controles
2.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943390

RESUMO

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a mosaic RASopathy characterized by the association of dysplastic skeletal lesions, congenital skin nevi of epidermal and/or melanocytic origin, and FGF23-mediated hypophosphatemia. The primary physiological source of circulating FGF23 is bone cells. However, several reports have suggested skin lesions as the source of excess FGF23 in CSHS. Consequently, without convincing evidence of efficacy, many patients with CSHS have undergone painful removal of cutaneous lesions in an effort to normalize blood phosphate levels. This study aims to elucidate whether the source of FGF23 excess in CSHS is RAS mutation-bearing bone or skin lesions. Toward this end, we analyzed the expression and activity of Fgf23 in two mouse models expressing similar HRAS/Hras activating mutations in a mosaic-like fashion in either bone or epidermal tissue. We found that HRAS hyperactivity in bone, not skin, caused excess of bioactive intact FGF23, hypophosphatemia, and osteomalacia. Our findings support RAS-mutated dysplastic bone as the primary source of physiologically active FGF23 excess in patients with CSHS. This evidence informs the care of patients with CSHS, arguing against the practice of nevi removal to decrease circulating, physiologically active FGF23.


Assuntos
Hipofosfatemia , Nevo , Neoplasias Cutâneas , Animais , Camundongos , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Hipofosfatemia/genética , Hipofosfatemia/patologia , Nevo/genética , Neoplasias Cutâneas/patologia , Síndrome
3.
Bone ; 161: 116450, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623613

RESUMO

High bone mass (HBM) disorders are a clinically and genetically heterogeneous subgroup of rare skeletal dysplasias. Here we present a case of a previously unreported familial skeletal dysplasia characterized by HBM and lucent bone lesions that we aimed to clinically characterize and genetically investigate. For phenotyping, we reviewed past clinical records and imaging tests, and performed physical examination (PE), bone densitometry, and mineral panels in affected individuals, including a male proband, his son and daughter, in addition to unaffected controls, including the proband's wife and brother. Affected individuals also underwent impact microindentation (IMI). In an effort to elucidate the disorder's molecular etiology, whole exome sequencing (WES) was performed in all individuals to filter for rare variants present only in affected ones. The cases displayed a unique skeletal phenotype with a mix of sclerotic features and lucent bone lesions, and high IMI values. Bone mineral density was very elevated in the proband and his daughter. The proband's daughter also exhibited idiopathic scoliosis (IS), in addition to mild thrombocytopenia and mild structural thyroid abnormalities, which were the only extra-skeletal abnormalities identified. WES analysis yielded 5 rare putative pathogenic variants in affected members in genes that are associated with bone metabolism including: SEM4AD, TBX18, PTCH1, PTK7, and ADGRE5. The PTK7 variant appeared as possibly implicated in the development of IS while the TBX18 and SEMA4D variants stood out as the strongest candidates for the lucent bone lesions and HBM, respectively, given their high predicted pathogenicity and putative role in bone biology. Variant functionality should be addressed in the future to assess their implication in skeletal metabolism as it is the first time that mutations in TBX18 and SEMA4D have been associated to bone developmental lesions and mineral metabolism in a clinical setting.


Assuntos
Doenças Ósseas , Osteocondrodisplasias , Moléculas de Adesão Celular , Humanos , Masculino , Mutação/genética , Linhagem , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Sequenciamento do Exoma
4.
J Bone Miner Res ; 37(2): 179-184, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34464000

RESUMO

Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) both influence blood phosphate levels by regulating urinary phosphate reabsorption. Clinical data suggest that adequate renal phosphate handling requires the presence of both FGF23 and PTH, but robust evidence is lacking. To investigate whether the phosphaturic effects of PTH and FGF23 are interdependent, 11 patients with hypoparathyroidism, which features high blood phosphate in spite of concomitant FGF23 elevation, and 1 patient with hyperphosphatemic familial tumoral calcinosis (HFTC), characterized by deficient intact FGF23 action and resulting hyperphosphatemia, were treated with synthetic human PTH 1-34 (hPTH 1-34). Biochemical parameters, including blood phosphate, calcium, intact FGF23 (iFGF23), nephrogenic cAMP, 1,25(OH)2 vitamin D (1,25D), and tubular reabsorption of phosphate (TRP), were measured at baseline and after hPTH 1-34 treatment. In patients with hypoparathyroidism, administration of hPTH 1-34 increased nephrogenic cAMP, which resulted in serum phosphate normalization followed by a significant decrease in iFGF23. TRP initially decreased and returned to baseline. In the patient with HFTC, hPTH 1-34 administration also increased nephrogenic cAMP, but this did not produce changes in phosphate or TRP. No changes in calcium were observed in any of the studied patients, although prolonged hPTH 1-34 treatment did induce supraphysiologic 1,25D levels in the patient with HFTC. Our results indicate that PTH and FGF23 effects on phosphate regulation are interdependent and both are required to adequately regulate renal phosphate handling. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Hiperfosfatemia , Hipoparatireoidismo , Calcinose , Fatores de Crescimento de Fibroblastos , Humanos , Hiperostose Cortical Congênita , Hiperfosfatemia/tratamento farmacológico , Hipoparatireoidismo/tratamento farmacológico , Hipoparatireoidismo/genética , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Fosfatos
5.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299011

RESUMO

Osteoporosis is the most common metabolic bone disorder and nitrogen-containing bisphosphonates (BP) are a first line treatment for it. Yet, atypical femoral fractures (AFF), a rare adverse effect, may appear after prolonged BP administration. Given the low incidence of AFF, an underlying genetic cause that increases the susceptibility to these fractures is suspected. Previous studies uncovered rare CYP1A1 mutations in osteoporosis patients who suffered AFF after long-term BP treatment. CYP1A1 is involved in drug metabolism and steroid catabolism, making it an interesting candidate. However, a functional validation for the AFF-associated CYP1A1 mutations was lacking. Here we tested the enzymatic activity of four such CYP1A1 variants, by transfecting them into Saos-2 cells. We also tested the effect of commonly used BPs on the enzymatic activity of the CYP1A1 forms. We demonstrated that the p.Arg98Trp and p.Arg136His CYP1A1 variants have a significant negative effect on enzymatic activity. Moreover, all the BP treatments decreased CYP1A1 activity, although no specific interaction with CYP1A1 variants was found. Our results provide functional support to the hypothesis that an additive effect between CYP1A1 heterozygous mutations p.Arg98Trp and p.Arg136His, other rare mutations and long-term BP exposure might generate susceptibility to AFF.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fraturas do Fêmur/genética , Fraturas do Fêmur/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocromo P-450 CYP1A1/química , Difosfonatos/uso terapêutico , Fraturas do Fêmur/enzimologia , Humanos , Incidência , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Filogenia , Alinhamento de Sequência
6.
Eur J Endocrinol ; 182(5): R83-R99, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069220

RESUMO

Fibrous dysplasia/McCune-Albright Syndrome (FD/MAS), arising from gain-of-function mutations in Gαs, and cutaneous skeletal hypophosphatemia syndrome (CSHS), arising from gain-of-function mutations in the Ras/MAPK pathway, are strikingly complex, mosaic diseases with overlapping phenotypes. Both disorders are defined by mosaic skin and bone involvement, and both are complicated by increased FGF23 production. These similarities have frequently led to mis-diagnoses, primarily in patients with CSHS who are often assumed to have FD/MAS. The intriguing similarities in skeletal involvement in these genetically distinct disorders have led to novel insights into FGF23 physiology, making an understanding of FD/MAS and CSHS relevant to both clinicians and researchers interested in bone and endocrine disorders. This review will give an overview of FD/MAS and CSHS, focusing on the roles of mosaicism and FGF23 in the pathogenesis and clinical presentation of these disorders.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Displasia Fibrosa Poliostótica/diagnóstico , Hipofosfatemia/diagnóstico , Fator de Crescimento de Fibroblastos 23 , Displasia Fibrosa Poliostótica/sangue , Displasia Fibrosa Poliostótica/genética , Humanos , Hipofosfatemia/sangue , Hipofosfatemia/genética , Mosaicismo , Mutação , Transdução de Sinais/genética
7.
Bone ; 123: 39-47, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30878523

RESUMO

Genome-wide association studies (GWAS) have repeatedly identified genetic variants associated with bone mineral density (BMD) and osteoporotic fracture in non-coding regions of C7ORF76, a poorly studied gene of unknown function. The aim of the present study was to elucidate the causality and molecular mechanisms underlying the association. We re-sequenced the genomic region in two extreme BMD groups from the BARCOS cohort of postmenopausal women to search for functionally relevant variants. Eight selected variants were tested for association in the complete cohort and 2 of them (rs4342521 and rs10085588) were found significantly associated with lumbar spine BMD and nominally associated with osteoporotic fracture. cis-eQTL analyses of these 2 SNPs, together with SNP rs4727338 (GWAS lead SNP in Estrada et al., Nat Genet. 44:491-501, 2012), performed in human primary osteoblasts, disclosed a statistically significant influence on the expression of the proximal neighbouring gene SLC25A13 and a tendency on the distal SHFM1. We then studied the functionality of a putative upstream regulatory element (UPE), containing rs10085588. Luciferase reporter assays showed transactivation capability with a strong allele-dependent effect. Finally, 4C-seq experiments in osteoblastic cell lines showed that the UPE interacted with different tissue-specific enhancers and a lncRNA (LOC100506136) in the region. In summary, this study is the first one to analyse in depth the functionality of C7ORF76 genomic region. We provide functional regulatory evidence for the rs10085588, which may be a causal SNP within the 7q21.3 GWAS signal for osteoporosis.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Osteoporose/genética , Densidade Óssea/genética , Linhagem Celular Tumoral , Células Cultivadas , Predisposição Genética para Doença/genética , Humanos , Desequilíbrio de Ligação/genética , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
8.
J Bone Miner Res ; 34(4): 661-668, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30496603

RESUMO

The role of the calcium-sensing receptor (CaSR) as a regulator of parathyroid hormone secretion is well established, but its function in bone is less well defined. In an effort to elucidate the CaSR's skeletal role, bone tissue and material characteristics from patients with autosomal dominant hypocalcemia (ADH), a genetic form of primary hypoparathyroidism caused by CASR gain-of-function mutations, were compared to patients with postsurgical hypoparathyroidism (PSH). Bone structure and formation/resorption indices and mineralization density distribution (BMDD), were examined in transiliac biopsy samples from PSH (n = 13) and ADH (n = 6) patients by histomorphometry and quantitative backscatter electron imaging, respectively. Bone mineral density (BMD by DXA) and biochemical characteristics were measured at the time of the biopsy. Because both study groups comprised children and adults, all measured biopsy parameters and BMD outcomes were converted to Z-scores for comparison. Histomorphometric indices were normal and not different between ADH and PSH, with the exception of mineral apposition rate Z-score, which was higher in the ADH group. Similarly, average BMD Z-scores were normal and not different between ADH and PSH. Significant differences were observed for the BMDD: average Z-scores of mean and typical degree of mineralization (CaMean, CaPeak, respectively) were lower (p = 0.02 and p = 0.03, respectively), whereas the heterogeneity of mineralization (CaWidth) and percentage of lower mineralized areas (CaLow) were increased in ADH versus PSH (p = 0.01 and p = 0.002, respectively). The BMDD outcomes point toward a direct, PTH-independent role of the CaSR in the regulation of bone mineralization. © 2018 American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea , Mutação com Ganho de Função , Hipercalciúria , Hipocalcemia , Hipoparatireoidismo/congênito , Complicações Pós-Operatórias , Receptores de Detecção de Cálcio , Adolescente , Adulto , Criança , Feminino , Humanos , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/patologia , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipocalcemia/patologia , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Hipoparatireoidismo/patologia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(3): E428-E437, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29282319

RESUMO

Fibrous dysplasia (FD) is a disease caused by postzygotic activating mutations of GNAS (R201C and R201H) that encode the α-subunit of the Gs stimulatory protein. FD is characterized by the development of areas of abnormal fibroosseous tissue in the bones, resulting in skeletal deformities, fractures, and pain. Despite the well-defined genetic alterations underlying FD, whether GNAS activation is sufficient for FD initiation and the molecular and cellular consequences of GNAS mutations remains largely unresolved, and there are no currently available targeted therapeutic options for FD. Here, we have developed a conditional tetracycline (Tet)-inducible animal model expressing the GαsR201C in the skeletal stem cell (SSC) lineage (Tet-GαsR201C/Prrx1-Cre/LSL-rtTA-IRES-GFP mice), which develops typical FD bone lesions in both embryos and adult mice in less than 2 weeks following doxycycline (Dox) administration. Conditional GαsR201C expression promoted PKA activation and proliferation of SSCs along the osteogenic lineage but halted their differentiation to mature osteoblasts. Rather, as is seen clinically, areas of woven bone admixed with fibrous tissue were formed. GαsR201C caused the concomitant expression of receptor activator of nuclear factor kappa-B ligand (Rankl) that led to marked osteoclastogenesis and bone resorption. GαsR201C expression ablation by Dox withdrawal resulted in FD-like lesion regression, supporting the rationale for Gαs-targeted drugs to attempt FD cure. This model, which develops FD-like lesions that can form rapidly and revert on cessation of mutant Gαs expression, provides an opportunity to identify the molecular mechanism underlying FD initiation and progression and accelerate the development of new treatment options.


Assuntos
Displasia Fibrosa Óssea/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Antibacterianos/toxicidade , Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/patologia , Diferenciação Celular , Doxiciclina/toxicidade , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Mutação
10.
J Bone Miner Res ; 32(8): 1667-1671, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28459498

RESUMO

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which unregulated hypersecretion of fibroblast growth factor 23 (FGF23) by phosphaturic mesenchymal tumors (PMT) causes renal phosphate wasting, hypophosphatemia, and osteomalacia. The resulting mineral homeostasis abnormalities and skeletal manifestations can be reversed with surgical resection of the tumor. Unfortunately, PMTs are often difficult to locate, and medical treatment with oral phosphate and vitamin D analogues is either insufficient to manage the disease or not tolerated. Octreotide has been proposed as a potential treatment for TIO due to the presence of somatostatin receptors (SSTR) on PMTs; however, the role of somatostatin signaling in PMTs and the efficacy of treatment of TIOs with somatostatin analogues is not clear. In an effort to evaluate the efficacy of octreotide therapy in TIO, five subjects with TIO were treated with octreotide for 3 days. Blood intact FGF23, phosphate, and 1,25(OH)2 D3 , and tubular reabsorption of phosphate (TRP) were measured at frequent time points during treatment. Octreotide's effects were assessed by comparing group means of the biochemical parameters at each time-point to mean baseline values. There were no significant changes in blood phosphate, FGF23, 1,25(OH)2 D3 , or TRP during octreotide treatment, consistent with a lack of efficacy of octreotide in treating TIO. © 2017 American Society for Bone and Mineral Research.


Assuntos
Calcitriol/sangue , Fatores de Crescimento de Fibroblastos/sangue , Octreotida/administração & dosagem , Osteomalacia , Síndromes Paraneoplásicas , Fosfatos/sangue , Adulto , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Pessoa de Meia-Idade , Osteomalacia/sangue , Osteomalacia/tratamento farmacológico , Síndromes Paraneoplásicas/sangue , Síndromes Paraneoplásicas/tratamento farmacológico
11.
J Am Acad Dermatol ; 75(2): 420-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27444071

RESUMO

BACKGROUND: We recently demonstrated multilineage somatic mosaicism in cutaneous skeletal hypophosphatemia syndrome (CSHS), which features epidermal or melanocytic nevi, elevated fibroblast growth factor (FGF)-23, and hypophosphatemia, finding identical RAS mutations in affected skin and bone. OBJECTIVE: We sought to: (1) provide an updated overview of CSHS; (2) review its pathobiology; (3) present a new patient with CSHS; and (4) discuss treatment modalities. METHODS: We searched PubMed for "nevus AND rickets," and "nevus AND hypophosphatemia," identifying cases of nevi with hypophosphatemic rickets or elevated serum FGF-23. For our additional patient with CSHS, we performed histopathologic and radiographic surveys of skin and skeletal lesions, respectively. Sequencing was performed for HRAS, KRAS, and NRAS to determine causative mutations. RESULTS: Our new case harbored somatic activating HRAS p.G13 R mutation in affected tissue, consistent with previous findings. Although the mechanism of FGF-23 dysregulation is unknown in CSHS, interaction between FGF and MAPK pathways may provide insight into pathobiology. Anti-FGF-23 antibody KRN-23 may be useful in managing CSHS. LIMITATIONS: Multilineage RAS mutation in CSHS was recently identified; further studies on mechanism are unavailable. CONCLUSION: Patients with nevi in association with skeletal disease should be evaluated for serum phosphate and FGF-23. Further studies investigating the role of RAS in FGF-23 regulation are needed.


Assuntos
Genes ras/genética , Mosaicismo , Nevo Pigmentado/genética , Osteomalacia/genética , Raquitismo Hipofosfatêmico/genética , Neoplasias Cutâneas/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Nevo Pigmentado/tratamento farmacológico , Osteomalacia/tratamento farmacológico , Raquitismo Hipofosfatêmico/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Síndrome
13.
Hum Mol Genet ; 23(2): 397-407, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24006476

RESUMO

Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , GTP Fosfo-Hidrolases/genética , Hipofosfatemia/genética , Proteínas de Membrana/genética , Nevo Pigmentado/genética , Osteomalacia/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genética , Adolescente , Criança , Exoma , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipofosfatemia/sangue , Hipofosfatemia/patologia , Masculino , Mutação , Nevo , Nevo Pigmentado/sangue , Nevo Pigmentado/patologia , Osteomalacia/sangue , Osteomalacia/patologia , Análise de Sequência de DNA , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/patologia
14.
Arch Esp Urol ; 66(3): 302-4, 2013 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-23648750

RESUMO

OBJECTIVE: To study lytic lesions in a patient with past history of renal cancer. METHODS: A 62 year-old man was admitted to hospital for investigation of the cause of polyostotic bone pain. RESULTS: Brown tumors due to hyperparathyroidism turned out to be the cause of bone pain. CONCLUSIONS: Differential diagnosis is important in daily practice in order to provide a correct treatment for each condition.


Assuntos
Hiperparatireoidismo , Osteíte Fibrosa Cística , Diagnóstico Diferencial , Humanos , Neoplasias Renais/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA