Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(5): 728-742, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387030

RESUMO

The ß-cell plays a crucial role in the pathogenesis of type 1 diabetes, in part through the posttranslational modification of self-proteins by biochemical processes such as deamidation. These neoantigens are potential triggers for breaking immune tolerance. We report the detection by LC-MS/MS of 16 novel Gln and 27 novel Asn deamidations in 14 disease-related proteins within inflammatory cytokine-stressed human islets of Langerhans. T-cell clones responsive against one Gln- and three Asn-deamidated peptides could be isolated from peripheral blood of individuals with type 1 diabetes. Ex vivo HLA class II tetramer staining detected higher T-cell frequencies in individuals with the disease compared with control individuals. Furthermore, there was a positive correlation between the frequencies of T cells specific for deamidated peptides, insulin antibody levels at diagnosis, and duration of disease. These results highlight that stressed human islets are prone to enzymatic and biochemical deamidation and suggest that both Gln- and Asn-deamidated peptides can promote the activation and expansion of autoreactive CD4+ T cells. These findings add to the growing evidence that posttranslational modifications undermine tolerance and may open the road for the development of new diagnostic and therapeutic applications for individuals living with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Linfócitos T CD4-Positivos , Diabetes Mellitus Tipo 1/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ilhotas Pancreáticas/metabolismo , Peptídeos
2.
Diabetes ; 73(5): 743-750, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295386

RESUMO

Hybrid insulin peptides (HIPs) formed through covalent cross-linking of proinsulin fragments to secretory granule peptides are detectable within murine and human islets. The 2.5HIP (C-peptide-chromogranin A [CgA] HIP), recognized by the diabetogenic BDC-2.5 clone, is a major autoantigen in the nonobese diabetic mouse. However, the relevance of this epitope in human disease is currently unclear. A recent study probed T-cell reactivity toward HIPs in patients with type 1 diabetes, documenting responses in one-third of the patients and isolating several HIP-reactive T-cell clones. In this study, we isolated a novel T-cell clone and showed that it responds vigorously to the human equivalent of the 2.5HIP (designated HIP9). Although the responding patient carried the risk-associated DRB1*04:01/DQ8 haplotype, the response was restricted by DRB1*11:03 (DR11). HLA class II tetramer staining revealed higher frequencies of HIP9-reactive T cells in individuals with diabetes than in control participants. Furthermore, in DR11+ participants carrying the DRB4 allele, HIP9-reactive T-cell frequencies were higher than observed frequencies for the immunodominant proinsulin 9-28 epitope. Finally, there was a negative correlation between HIP9-reactive T-cell frequency and age at diagnosis. These results provide direct evidence that this C-peptide-CgA HIP is relevant in human type 1 diabetes and suggest a mechanism by which nonrisk HLA haplotypes may contribute to the development of ß-cell autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Animais , Camundongos , Linfócitos T , Proinsulina , Peptídeo C , Cromogranina A , Peptídeos , Insulina Regular Humana , Epitopos , Fragmentos de Peptídeos
3.
Methods Mol Biol ; 2596: 231-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378443

RESUMO

Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. In this chapter, we describe our routine two-dimensional difference gel electrophoresis (2D-DIGE) workflow for analysis of mouse liver tissue in physiological conditions, as well as of mouse HCC. 2D-DIGE still constitutes a valuable comparative proteomics technique, not only providing information on global protein expression in a sample but also on potential posttranslational protein modifications, occurrence of protein degradation fragments, and the existence of protein isoforms. Thus, 2D-DIGE analysis provides highly complementary data to non-gel-based shotgun mass spectrometry (MS) methods (e.g., liquid chromatography (LC)-MS/MS)-allowing, for example, identification of novel protein biomarkers for HCC or increasing insights into the molecular mechanisms underlying hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Eletroforese em Gel Diferencial Bidimensional , Carcinoma Hepatocelular/metabolismo , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Hepáticas/metabolismo , Isoformas de Proteínas , Eletroforese em Gel Bidimensional/métodos
4.
Front Immunol ; 12: 667989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953728

RESUMO

The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.


Assuntos
Autoantígenos/imunologia , Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Epitopos , Tolerância Imunológica , Células Secretoras de Insulina/imunologia , Linfócitos T/imunologia , Animais , Autoantígenos/metabolismo , Biomarcadores/metabolismo , Morte Celular , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Processamento de Proteína Pós-Traducional , Linfócitos T/metabolismo
5.
J Proteome Res ; 20(2): 1405-1414, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372785

RESUMO

Enzymatic deamidation, the conversion of glutamine (Gln) into glutamic acid (Glu) residues, mediated by tissue transglutaminase enzymes, can provoke autoimmunity by generating altered self-epitopes, a process well-known in celiac disease and more recently also described in type 1 diabetes (T1D). To identify deamidated proteins, liquid chromatography-tandem mass spectrometry is the method of choice. However, as nonenzymatic deamidations on asparagine (Asn) and to a minor extent on Gln are frequently induced in vitro during proteomics sample preparation, the accurate detection of in vivo deamidation can be hampered. Here we report on the optimization of a method to reduce in vitro generated deamidation by 70% using improved trypsin digestion conditions (90 min/pH 8). We also point to the critical importance of manual inspection of MS2 spectra, considering that only 55% of the high quality peptides with Gln deamidation were assigned correctly using an automated search algorithm. As proof of principal, using these criteria, we showed a significant increase in levels of both Asn and Gln deamidation in cytokine-exposed murine MIN6 ß-cells, paralleled by an increase in tissue transglutaminase activity. These findings add evidence to the hypothesis that deamidation is occurring in stressed ß-cell proteins and can be involved in the autoimmune process in T1D.


Assuntos
Citocinas , Espectrometria de Massas em Tandem , Amidas , Animais , Asparagina , Cromatografia Líquida , Digestão , Camundongos , Peptídeos
6.
Cancer Genomics Proteomics ; 17(6): 669-685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33099469

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Mice lacking the tumor-suppressive protein phosphatase 2A subunit B56δ (Ppp2r5d) spontaneously develop HCC, correlating with increased c-MYC oncogenicity. MATERIALS AND METHODS: We used two-dimensional difference gel electrophoresis-coupled matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to identify differential proteomes of livers from wild-type, non-cancerous and HCC-affected B56δ knockout mice. RESULTS: A total of 23 proteins were differentially expressed/regulated in liver between wild-type and non-cancerous knockout mice, and 119 between non-cancerous and HCC knockout mice ('cancer proteins'). Overlap with our reported differential transcriptome data was poor. Overall, 56% of cancer proteins were reported before in HCC proteomics studies; 44% were novel. Gene Ontology analysis revealed cancer proteins mainly associated with liver metabolism (18%) and mitochondria (15%). Ingenuity Pathway Analysis identified 'cancer' and 'gastrointestinal disease' as top hits. CONCLUSION: We identified several proteins for further exploration as novel potential HCC biomarkers, and independently underscored the relevance of Ppp2r5d knockout mice as a valuable hepatocarcinogenesis model.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína Fosfatase 2/fisiologia , Proteoma/análise , Proteoma/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Tumorais Cultivadas
7.
Cell Death Dis ; 10(4): 309, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952835

RESUMO

The 78-kDa glucose-regulated protein (GRP78) is an ubiquitously expressed endoplasmic reticulum chaperone, with a central role in maintaining protein homeostasis. Recently, an alternative role for GRP78 under stress conditions has been proposed, with stress-induced extracellular secretion and translocation of GRP78 to the cell surface where it acts as a multifunctional signaling receptor. Here we demonstrate translocation of GRP78 to the surface of human EndoC-ßH1 cells and primary human islets upon cytokine exposure, in analogy to observations in rodent INS-1E and MIN6 beta cell lines. We show that GRP78 is shuttled via the anterograde secretory pathway, through the Golgi complex and secretory granules, and identify the DNAJ homolog subfamily C member 3 (DNAJC3) as a GRP78-interacting protein that facilitates its membrane translocation. Evaluation of downstream signaling pathways, using N- and C-terminal anti-GRP78 blocking antibodies, demonstrates that both GRP78 signaling domains initiate pro-apoptotic signaling cascades in beta cells. Extracellular GRP78 itself is identified as a ligand for cell surface GRP78 (sGRP78), increasing caspase 3/7 activity and cell death upon binding, which is accompanied by enhanced Chop and Bax mRNA expression. These results suggest that inflammatory cytokines induce a self-destructive pro-apoptotic feedback loop through the secretion and membrane translocation of GRP78. This proapoptotic function distinguishes the role of sGRP78 in beta cells from its reported anti-apoptotic and proliferative role in cancer cells, opening the road for the use of compounds that block sGRP78 as potential beta cell-preserving therapies in type 1 diabetes.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Citocinas/farmacologia , Proteínas de Choque Térmico/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Citocinas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Retroalimentação Fisiológica/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Ratos
8.
Diabetes ; 67(11): 2337-2348, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30348823

RESUMO

The ß-cell has become recognized as a central player in the pathogenesis of type 1 diabetes with the generation of neoantigens as potential triggers for breaking immune tolerance. We report that posttranslationally modified glucose-regulated protein 78 (GRP78) is a novel autoantigen in human type 1 diabetes. When human islets were exposed to inflammatory stress induced by interleukin-1ß, tumor necrosis factor-α, and interferon-γ, arginine residue R510 within GRP78 was converted into citrulline, as evidenced by liquid chromatography-tandem mass spectrometry. This conversion, known as citrullination, led to the generation of neoepitopes, which effectively could be presented by HLA-DRB1*04:01 molecules. With the use of HLA-DRB1*04:01 tetramers and ELISA techniques, we demonstrate enhanced antigenicity of citrullinated GRP78 with significantly increased CD4+ T-cell responses and autoantibody titers in patients with type 1 diabetes compared with healthy control subjects. Of note, patients with type 1 diabetes had a predominantly higher percentage of central memory cells and a lower percentage of effector memory cells directed against citrullinated GRP78 compared with the native epitope. These results strongly suggest that citrullination of ß-cell proteins, exemplified here by the citrullination of GRP78, contributes to loss of self-tolerance toward ß-cells in human type 1 diabetes, indicating that ß-cells actively participate in their own demise.


Assuntos
Autoantígenos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Inflamação/metabolismo , Ilhotas Pancreáticas/metabolismo , Autoantígenos/imunologia , Citrulinação , Citocinas/farmacologia , Diabetes Mellitus Tipo 1/imunologia , Chaperona BiP do Retículo Endoplasmático , Humanos , Inflamação/imunologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia
9.
J Steroid Biochem Mol Biol ; 164: 239-245, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26343449

RESUMO

The nuclear vitamin D receptor (VDR) is generally recognized as a ligand-dependent transcription factor that mediates the actions of its natural ligand, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) on multiple target genes involved in mineral homeostasis, bone development, as well as immune reactivity. As the VDR is widely distributed in nearly all cells of the body, it implies that the vitamin D endocrine system may regulate many cell types and functions. Experiments in VDR null mice established that the VDR has intrinsically critical roles in skin and keratinocyte biology but not in immune responses. Oppositely, absence of the VDR ligand is linked to susceptibility to autoimmunity, illustrating a potential role for the unliganded VDR in the immune system. This discrepancy stimulated us to further investigate the impact of the VDR on the phenotype and function of myeloid dendritic cells (DCs) generated ex vivo from bone marrow precursors of VDR null (with a truncated VDR) and VDR ΔAF2 mice (with a mutated C-terminal activation factor 2 domain thus rendering ligand-induced gene transcription impossible). Absent or unliganded VDR did not affect bone marrow-derived myeloid DC generation. DCs obtained from VDR null and VDR ΔAF2 bone marrow cells had comparable MHC-II, and costimulatory molecule CD86, CD80 and CD40 expression than DCs from wild-type bone marrow cells. Additionally, an unliganded VDR did not affect the cytokine production nor the antigen-specific T cell stimulatory capacity of bone marrow-derived DCs. In conclusion, we showed that although clear effects of 1α,25-dihydroxyvitamin D3 are described on DC generation, absence of VDR or presence of an unliganded VDR does not affect the profile and function of ex vivo generated bone marrow-derived DCs.


Assuntos
Células da Medula Óssea/imunologia , Calcitriol/metabolismo , Células Dendríticas/imunologia , Receptores de Calcitriol/genética , Linfócitos T/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Células da Medula Óssea/citologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Calcitriol/imunologia , Diferenciação Celular , Células Dendríticas/citologia , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Ligantes , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores de Calcitriol/deficiência , Linfócitos T/citologia
11.
PLoS One ; 9(8): e104866, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119564

RESUMO

AIMS/HYPOTHESIS: To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function. METHODS: Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6) and rat (INS-1E) beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1). Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS). Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests. RESULTS: 24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05). Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05) and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein). Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05) and reactive oxygen species increased by more than twofold (P<0.05) following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively. CONCLUSIONS/INTERPRETATION: Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.


Assuntos
Apoptose/efeitos dos fármacos , Depsipeptídeos/toxicidade , Microbiologia de Alimentos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Mitocôndrias/efeitos dos fármacos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Glucose/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Ratos
12.
Science ; 344(6180): 203-7, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24652937

RESUMO

Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations.


Assuntos
Proteínas de Drosophila/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Proteínas Quinases/genética , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Humanos , Fígado/enzimologia , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Fosforilação/genética , Proteoma , Serina/química , Serina/metabolismo
13.
J Proteomics ; 86: 53-69, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23681173

RESUMO

Alternating hemiplegia of childhood (AHC) is a rare syndrome with repeated hemiplegic episodes, paroxysmal events and global neurological impairment. Recently, heterozygous de novo ATP1A3 missense mutations have been identified in AHC patients, but the underlying pathogenesis mechanism remains unknown. Mutation analysis of ATP1A3 in 9 unrelated AHC cases revealed mostly D801N or E815K variants. As platelets represent a good cellular model to study defects in neuropathologies, morphological and functional experiments were performed in these subjects. Platelets from the AHC patients presented with structural and functional abnormalities of granules positive for the lysosomal marker CD63. Similar structural granule abnormalities were detected in patients' fibroblasts. Proteomic analysis of platelets and fibroblasts showed a total of 93 differentially expressed proteins in AHC mainly involved in metabolism. Interestingly, 7 of these proteins were detected in both cell types, including the lysosomal protein cathepsin. AHC fibroblasts revealed significantly increased levels of activated cathepsin B, which induces a stronger activation of apoptosis. Our study is the first to link ATP1A3 defects in AHC to a platelet and fibroblast lysosomal defect with evidence of increased apoptosis. Further studies are needed to define how this lysosomal defect is related to decreased ATPase activity. Biological Significance Only recently, the genetic cause of AHC was identified as heterozygous ATP1A3 mutations, but the underlying pathophysiological mechanism still remains unknown. By performing functional, morphological and proteomic studies in AHC patients we found a structural and functional granule defect in AHC platelets and fibroblasts that was specifically found in granules positive for the lysosomal marker CD63. In particular, proteomics identified several differentially expressed proteins in fibroblasts and platelets from AHC cases that are predicted to have an important role in cell function and maintenance, a pathway typically attributed to lysosomes. The lysosomal protein cathepsin was found to be differentially expressed in both platelets and fibroblasts of AHC patients, inducing a stronger activation of mainly the intrinsic apoptosis. Despite the precise mechanism for the increased lysosomal cathepsin B-dependent apoptosis detected in AHC in relation to impaired ATP1A3 deserves further studies, we could here show some evidence for a defective regulation of apoptosis in AHC, a disease that still has no biochemical or neuroradiological parameters for diagnosis.


Assuntos
Plaquetas/metabolismo , Catepsina B/metabolismo , Hemiplegia/genética , ATPase Trocadora de Sódio-Potássio/genética , Apoptose/genética , Catepsina B/genética , Eletroforese em Gel Bidimensional , Feminino , Fibroblastos/metabolismo , Hemiplegia/metabolismo , Hemiplegia/patologia , Humanos , Lactente , Recém-Nascido , Lisossomos/enzimologia , Masculino , Transcriptoma
14.
Am J Nephrol ; 36(6): 497-508, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23171504

RESUMO

BACKGROUND: Local production of 1,25-dihydroxyvitamin D (1,25(OH)(2)D) regulated by the CYP27B1 enzyme in monocytes contributes to the immunomodulatory effects of vitamin D. Uremia suppresses renal CYP27B1, but its impact on monocytic CYP27B1 is incompletely understood. The present study aimed to elucidate this issue and to define the pathogenic role of p-cresyl sulfate (PCS), indoxyl sulfate (IndS), and fibroblast growth factor 23 (FGF23). METHODS: Resting or immune (interferon-γ + lipopolysaccharide)-stimulated THP1 cells and monocytes, isolated from healthy donors, were cultured in the presence of either healthy serum, uremic serum, PCS, IndS or FGF23. RNA expression levels for CYP27B1 and cytokines were quantified by RT-PCR and enzymatic CYP27B1 activity was measured 24 h after incubation. RESULTS: Culturing THP1 cells or human monocytes in the presence of uremic serum led to higher inflammatory cytokine and CYP27B1 expression. Immune signal-induced CYP27B1 expression and activity, conversely, was impaired in the presence of uremic serum. Similar effects were observed in the presence of FGF23, although significance was reached in immune-stimulated cells only. PCS and IndS failed to show any effect. CONCLUSIONS: Monocytic baseline CYP27B1 expression is increased in uremia, probably reflecting the microinflammatory state. Immune signal-induced CYP27B1 expression, conversely, is impaired in uremic conditions. Elevated FGF23 levels, but not PCS and IndS, may account, at least partly, for the dysregulation of monocytic CYP27B1 in uremia and, as such, may contribute to the high cardiovascular and infectious burden in chronic kidney disease.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Citocinas/metabolismo , Monócitos/enzimologia , Uremia/enzimologia , Uremia/imunologia , Linhagem Celular Tumoral , Cresóis/farmacologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Indicã/farmacologia , Monócitos/imunologia , Soro/imunologia , Transdução de Sinais/imunologia , Ésteres do Ácido Sulfúrico , Regulação para Cima
15.
Neuroimmunomodulation ; 19(3): 137-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22261974

RESUMO

AIMS: We address the question of the expression and the role of the growth hormone/insulin-like growth factor (GH/IGF) axis in the thymus. METHODS: Using RT-qPCR, the expression profile of various components of the somatotrope GH/IGF axis was measured in different thymic cell types and during thymus embryogenesis in Balb/c mice. The effect of GH on T cell differentiation was explored via thymic organotypic culture. RESULTS: Transcription of Gh, Igf1, Igf2 and their related receptors predominantly occurred in thymic epithelial cells (TEC), while a low level of Gh and Igf1r transcription was also evidenced in thymic T cells (thymocytes). Gh, Ghr, Ins2, Igf1, Igf2, and Igfr1 displayed distinct expression profiles depending on the developmental stage. The protein concentrations of IGF-1 and IGF-2 were in accordance with the profile of their gene expression. In fetal thymus organ cultures (FTOC) derived from Balb/c mice, treatment with exogenous GH resulted in a significant increase of double negative CD4-CD8- T cells and CD4+ T cells, together with a decrease in double positive CD4+CD8+ T cells. These changes were inhibited by concomitant treatment with GH and the GH receptor (GHR) antagonist pegvisomant. However, GH treatment also induced a significant decrease in FTOC Gh, Ghr and Igf1 expression. CONCLUSION: These data show that the thymotropic properties of the somatotrope GH/IGF-1 axis involve an interaction between exogenous GH and GHR expressed by TEC. Since thymic IGF-1 is not increased by GH treatment, the effects of GH upon T cell differentiation could implicate a different local growth factor or cytokine.


Assuntos
Diferenciação Celular/imunologia , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Timo/imunologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Expressão Gênica/fisiologia , Hormônio do Crescimento/genética , Hormônio do Crescimento/imunologia , Insulina/genética , Insulina/imunologia , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/imunologia , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/imunologia , Receptores da Somatotropina/genética , Receptores da Somatotropina/imunologia , Receptores da Somatotropina/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/embriologia , Timo/metabolismo
16.
Diabetes Metab Res Rev ; 27(8): 933-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22069288

RESUMO

BACKGROUND: Differentiation and maturation of dendritic cells yield a cell type with the ability to prime immune responses towards defence and destruction. 1,25(OH)2D3, the active form of vitamin D3, fosters the development of tolerogenic dendritic cells. This study aimed to evaluate the effects of 1,25(OH)2D3 on murine dendritic cell behaviour in vitro and in vivo. METHODS: Dendritic cells were differentiated from bone marrow cells of female C57Bl/6 mice in the presence or absence of 10(-8) M 1,25(OH)2D3 for 8 days (IL4 and GM-CSF). Maturation was induced for 48 h (IFNγ, LPS and BALB/C islet homogenate antigen). RESULTS: Bone marrow-derived dendritic cells displayed a different surface marker profile in the presence of 1,25(OH)2D3 with decreased MHC II, CD86 and CD80 and increased CCR5, DEC205, F4/80 and CD40, as well as lower IL6 and IL12 expression upon LPS/IFNγ stimulation. T-cell proliferation was significantly reduced when exposed to islet antigen-loaded 1,25D3-DCs as compared to control dendritic cells and IL4, IL10, TNFα and TGFß levels were increased. In vivo, transfer of islet antigen-loaded control dendritic cells resulted in priming of the immune system and hyperacute islet allograft rejection (4/4), whereas this was prevented in 5/7 mice treated with islet antigen-loaded 1,25D3-DCs. CONCLUSION: We conclude that in vitro 1,25(OH)2D3 exposure alters dendritic cell behaviour, converting them into a cell type that drives T cells away from destruction towards a regulatory phenotype.


Assuntos
Calcitriol/farmacologia , Células Dendríticas/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas/métodos , Linfócitos T Reguladores/fisiologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/transplante , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Imunomodulação/fisiologia , Interleucina-10/biossíntese , Interleucina-4/farmacologia , Ilhotas Pancreáticas/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante Homólogo
18.
J Proteome Res ; 10(8): 3372-85, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21707097

RESUMO

High levels of fatty acids contribute to loss of functional beta cell mass in type 2 diabetes, in particular in combination with high glucose levels. The aim of this study was to elucidate the role of the unsaturated free fatty acid oleate in glucolipotoxicity and to unravel the molecular pathways involved. INS-1E cells were exposed to 0.5 mM oleate, combined or not with 25 mM glucose, for 24 h. Protein profiling of INS-1E cells was done by 2D-DIGE, covering pH ranges 4-7 and 6-9 (n = 4). Identification of differentially expressed proteins (P < 0.05) was based on MALDI-TOF analysis using Peptide Mass Fingerprint (PMF) and fragmentation (MS/MS) of the most intense peaks of PMF and proteomic results were confirmed by functional assays. Oleate impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 53 and 54 differentially expressed proteins for oleate and the combination of oleate and high glucose, respectively. Exposure to oleate down-regulated chaperones, hampered insulin processing and ubiquitin-related proteasomal degradation, and induced perturbations in vesicle transport and budding. In combination with high glucose, shunting of excess amounts of glucose toward reactive oxygen species production worsened beta cell death. The present findings provide new insights in oleate-induced beta cell dysfunction and identify target proteins for preservation of functional beta cell mass in type 2 diabetes.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Glucose/toxicidade , Ilhotas Pancreáticas/efeitos dos fármacos , Lipídeos/toxicidade , Ácido Oleico/farmacologia , Proteômica , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Eletroforese em Gel Bidimensional , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiopatologia , Reação em Cadeia da Polimerase , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
19.
Proteomics ; 11(7): 1365-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21365744

RESUMO

The insulin-producing INS-1E rat cell line is widely used as a model for studying ß-cells. It is a well-characterized cell line, mainly used in diabetes research. We established a 2-DE reference map for INS-1E cells. Using MALDI-TOF/TOF-MS/MS, we identified 546 spots. These included various proteins with an important role in ß-cell physiology and with known roles as crucial proteins for diabetes development. We believe that the availability of this reference map will enhance our knowledge of ß-cell physiology.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Proteínas/metabolismo , Proteoma/metabolismo , Animais , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Eletroforese em Gel Bidimensional , Expressão Gênica , Insulinoma/metabolismo , Insulinoma/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas/genética , Proteoma/genética , Proteômica/métodos , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
J Proteome Res ; 9(12): 6274-87, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20942503

RESUMO

Chronic hyperglycemia is a hallmark of type 2 diabetes and can contribute to progressive beta cell dysfunction and death. The aim of the present study was to identify pathways mediating high glucose-induced beta cell demise by a proteomic approach. INS-1E cells were exposed to 25 mM glucose for a sustained period of 24 h. Protein profiling of INS-1E cells was done by two-dimensional difference gel electrophoresis, covering the pH ranges 4-7 and 6-9 (n = 4). Differentially expressed proteins (P < 0.05) were identified by MALDI-TOF/TOF and proteomic results were confirmed by functional assays. High glucose levels impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 100 differentially expressed proteins that were involved in different pathways. Chaperone proteins were down-regulated, protein biosynthesis and ubiquitin-related proteasomal degradation were attenuated and perturbations in intracellular trafficking and vesicle transport and secretion could be observed. Moreover, several pathways were confirmed by functional assays and a direct role for eEF2 in insulin biosynthesis was demonstrated. The present findings provide new insights in glucotoxicity and identify key target proteins for the prevention and treatment of beta cell dysfunction in type 2 diabetes.


Assuntos
Glucose/farmacologia , Proteínas/análise , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patologia , Modelos Biológicos , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA