Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4773, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862494

RESUMO

Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.


Assuntos
Inflamação , Proteínas Proto-Oncogênicas p21(ras) , Pele , Voo Espacial , Humanos , Pele/imunologia , Pele/metabolismo , Pele/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Inflamação/imunologia , Inflamação/genética , Inflamação/metabolismo , Masculino , Análise de Célula Única , Adulto , Pessoa de Meia-Idade , Feminino , Metagenômica/métodos , Perfilação da Expressão Gênica , Multiômica
2.
Nat Commun ; 15(1): 4950, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862496

RESUMO

The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.


Assuntos
Astronautas , Análise de Sequência de RNA , Voo Espacial , Humanos , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Ausência de Peso , Masculino , Hematopoese/genética , Sequenciamento por Nanoporos/métodos , Adulto , RNA/genética , RNA/sangue , Metilação , Pessoa de Meia-Idade
3.
Sci Rep ; 11(1): 11452, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075076

RESUMO

Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-ß receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.


Assuntos
Raios gama/efeitos adversos , Hematopoese/imunologia , Hematopoese/efeitos da radiação , Elevação dos Membros Posteriores , Transdução de Sinais/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA