Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Oncol ; 62(11): 1566-1573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603112

RESUMO

BACKGROUND: The purpose of this study was to introduce an experimental radiobiological setup used for in vivo irradiation of a mouse leg target in multiple positions along a proton beam path to investigate normal tissue- and tumor models with varying linear energy transfer (LET). We describe the dosimetric characterizations and an acute- and late-effect assay for normal tissue damage. METHODS: The experimental setup consists of a water phantom that allows the right hind leg of three to five mice to be irradiated at the same time. Absolute dosimetry using a thimble (Semiflex) and a plane parallel (Advanced Markus) ionization chamber and Monte Carlo simulations using Geant4 and SHIELD-HIT12A were applied for dosimetric validation of positioning along the spread-out Bragg peak (SOBP) and at the distal edge and dose fall-off. The mice were irradiated in the center of the SOBP delivered by a pencil beam scanning system. The SOBP was 2.8 cm wide, centered at 6.9 cm depth, with planned physical single doses from 22 to 46 Gy. The biological endpoint was acute skin damage and radiation-induced late damage (RILD) assessed in the mouse leg. RESULTS: The dose-response curves illustrate the percentage of mice exhibiting acute skin damage, and at a later point, RILD as a function of physical doses (Gy). Each dose-response curve represents a specific severity score of each assay, demonstrating a higher ED50 (50% responders) as the score increases. Moreover, the results reveal the reversible nature of acute skin damage as a function of time and the irreversible nature of RILD as time progresses. CONCLUSIONS: We want to encourage researchers to report all experimental details of their radiobiological setups, including experimental protocols and model descriptions, to facilitate transparency and reproducibility. Based on this study, more experiments are being performed to explore all possibilities this radiobiological experimental setup permits.


Assuntos
Terapia com Prótons , Prótons , Animais , Camundongos , Reprodutibilidade dos Testes , Terapia com Prótons/métodos , Radiometria/métodos , Modelos Teóricos , Método de Monte Carlo
2.
Radiother Oncol ; 167: 109-115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953933

RESUMO

BACKGROUND AND PURPOSE: Preclinical studies indicate a normal tissue sparing effect using ultra-high dose rate (FLASH) radiation with comparable tumor response. Most data so far are based on electron beams with limited utility for human treatments. This study validates the effect of proton FLASH delivered with pencil beam scanning (PBS) in a mouse leg model of acute skin damage and quantifies the normal tissue sparing factor, the FLASH factor, through full dose response curves. MATERIALS AND METHODS: The right hind limb of CDF1 mice was irradiated with a single fraction of proton PBS in the entrance plateau of either a 244 MeV conventional dose rate field or a 250 MeV FLASH field. In total, 301 mice were irradiated in four separate experiments, with 7-21 mice per dose point. The endpoints were the level of acute moist desquamation to the skin of the foot within 25 days post irradiation. RESULTS: The field duration and field dose rate were 61-107 s and 0.35-0.40 Gy/s for conventional dose rate and 0.35-0.73 s and 65-92 Gy/s for FLASH. Full dose response curves for five levels of acute skin damage for both conventional and FLASH dose rate revealed a distinct normal tissue sparing effect with FLASH: across all scoring levels, a 44-58% higher dose was required to give the same biological response with FLASH as compared to the conventional dose rate. CONCLUSIONS: The normal tissue sparing effect of PBS proton FLASH was validated. The FLASH factor was quantified through full dose response curves.


Assuntos
Terapia com Prótons , Prótons , Animais , Humanos , Camundongos , Dosagem Radioterapêutica , Tromboplastina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA