Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 108(10): e907-e915, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37161470

RESUMO

CONTEXT: Androgen deprivation therapy (ADT) forms the cornerstone in prostate cancer (PCa) treatment. However, ADT also lowers skeletal muscle mass. OBJECTIVE: To identify the impact of ADT with and without resistance exercise training on muscle fiber characteristics in PCa patients. METHODS: Twenty-one PCa patients (72 ± 6 years) starting ADT were included. Tissue samples from the vastus lateralis muscle were assessed at baseline and after 20 weeks of usual care (n = 11) or resistance exercise training (n = 10). Type I and II muscle fiber distribution, fiber size, and myonuclear and capillary contents were determined by immunohistochemistry. RESULTS: Significant decreases in type I (from 7401 ± 1183 to 6489 ± 1293 µm2, P < .05) and type II (from 6225 ± 1503 to 5014 ± 714 µm2, P < .05) muscle fiber size were observed in the usual care group. In addition, type I and type II individual capillary-to-fiber ratio (C/Fi) declined (-12% ± 12% and -20% ± 21%, respectively, P < .05). In contrast, significant increases in type I (from 6700 ± 1464 to 7772 ± 1319 µm2, P < .05) and type II (from 5248 ± 892 to 6302 ± 1385 µm2, P < .05) muscle fiber size were observed in the training group, accompanied by an increase in type I and type II muscle fiber myonuclear contents (+24% ± 33% and +21% ± 23%, respectively, P < .05) and type I C/Fi (+18% ± 14%, P < .05). CONCLUSION: The onset of ADT is followed by a decline in both type I and type II muscle fiber size and capillarization in PCa patients. Resistance exercise training offsets the negative impact of ADT and increases type I and II muscle fiber size and type I muscle fiber capillarization in these patients.


Assuntos
Neoplasias da Próstata , Treinamento Resistido , Masculino , Humanos , Músculo Esquelético/fisiologia , Antagonistas de Androgênios/uso terapêutico , Androgênios , Neoplasias da Próstata/tratamento farmacológico , Terapia por Exercício
2.
Scand J Urol ; 57(1-6): 60-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703515

RESUMO

OBJECTIVES: To assess the adverse impact of the first 5 months of androgen deprivation therapy on body composition, physical performance, cardiometabolic health and health-related quality-of-life in prostate cancer patients. MATERIALS AND METHODS: Thirty-four prostate cancer patients (70 ± 7 years) were assessed shortly after initiation of androgen deprivation therapy and again 5 months thereafter. Measurements consisted of whole-body dual-energy x-ray absorptiometry (body composition), computed tomography scanning of the upper leg (muscle mass), one-repetition maximum leg press (muscle strength), cardiopulmonary exercise testing (aerobic capacity), blood draws (metabolic parameters), accelerometry (habitual physical activity) and questionnaires (health-related quality-of-life). Data were analyzed with Student's paired t-tests. RESULTS: Over time, whole-body fat mass (from 26.2 ± 7.7 to 28.4 ± 8.3 kg, p < 0.001) and fasting insulin (from 9.5 ± 5.8 to 11.3 ± 6.9 mU/L, p < 0.001) increased. Declines were observed for quadriceps cross-sectional area (from 66.3 ± 9.1 to 65.0 ± 8.5 cm2, p < 0.01), one-repetition maximum leg press (from 107 ± 27 to 100 ± 27 kg, p < 0.01), peak oxygen uptake (from 23.2 ± 3.7 to 20.3 ± 3.4 mL/min/kg body weight, p < 0.001), step count (from 7,048 ± 2,277 to 5,842 ± 1,749 steps/day, p < 0.01) and health-related quality-of-life (from 84.6 ± 13.5 to 77.0 ± 14.6, p < 0.001). CONCLUSIONS: Androgen deprivation therapy induces adverse changes in body composition, muscle strength, cardiometabolic health and health-related quality-of-life already within 5 months after the start of treatment, possibly largely contributed by diminished habitual physical activity. Prostate cancer patients should, therefore, be stimulated to increase their habitual physical activity immediately after initiation of androgen deprivation therapy, to limit adverse side-effects and to improve health-related quality-of-life.


Assuntos
Doenças Cardiovasculares , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/terapia , Antagonistas de Androgênios/uso terapêutico , Androgênios/farmacologia , Androgênios/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Composição Corporal , Desempenho Físico Funcional , Qualidade de Vida , Terapia por Exercício
3.
Med Sci Sports Exerc ; 55(4): 614-624, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534950

RESUMO

PURPOSE: This study aimed to assess the effects of 20 wk resistance exercise training with or without protein supplementation on body composition, muscle mass, muscle strength, physical performance, and aerobic capacity in prostate cancer patients receiving androgen deprivation therapy (ADT). METHODS: Sixty prostate cancer patients receiving ADT were randomly assigned to perform 20 wk of resistance exercise training with supplementation of 31 g whey protein (EX + PRO, n = 30) or placebo (EX + PLA, n = 30), consumed immediately after exercise and every night before sleep. A separate control group (CON, n = 36) only received usual care. At baseline and after 20 wk, body composition (dual-energy x-ray absorptiometry), muscle mass (computed tomography scan), muscle strength (1-repetition maximum strength tests), physical performance (Timed Up and Go Test, 30-Second Chair Stand Test, and Stair Climb Test), aerobic capacity (cardiopulmonary exercise test), and habitual dietary intake (food diary) were assessed. Data were analyzed using a two-factor repeated-measures ANOVA. RESULTS: Over time, muscle mass and strength increased in EX + PRO and EX + PLA and decreased in CON. Total fat mass and fat percentage increased in EX + PRO and CON, but not in EX + PLA. Physical performance did not significantly change over time in either group. Aerobic capacity was maintained in EX + PLA, but it decreased in EX + PRO and CON. Habitual protein intake (without supplements) averaged >1.0 g·kg body weight -1 ·d -1 , with no differences over time or between groups. CONCLUSIONS: In prostate cancer patients, resistance exercise training counteracts the adverse effects of ADT on body composition, muscle mass, muscle strength, and aerobic capacity, with no additional benefits of protein supplementation.


Assuntos
Neoplasias da Próstata , Treinamento Resistido , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/induzido quimicamente , Antagonistas de Androgênios/efeitos adversos , Androgênios/farmacologia , Androgênios/uso terapêutico , Equilíbrio Postural , Estudos de Tempo e Movimento , Suplementos Nutricionais , Força Muscular/fisiologia , Composição Corporal , Músculos , Poliésteres/farmacologia , Terapia por Exercício
4.
J Nutr ; 148(11): 1723-1732, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247714

RESUMO

Background: The proposed benefits of protein supplementation on the skeletal muscle adaptive response to resistance exercise training in older adults remain unclear. Objective: The present study assessed whether protein supplementation after exercise and before sleep augments muscle mass and strength gains during resistance exercise training in older individuals. Methods: Forty-one older men [mean ± SEM age: 70 ± 1 y; body mass index (kg/m2): 25.3 ± 0.4] completed 12 wk of whole-body resistance exercise training (3 sessions/wk) and were randomly assigned to ingest either protein (21 g protein, 3 g total leucine, 9 g carbohydrate, 3 g fat; n = 21) or an energy-matched placebo (0 g protein, 25 g carbohydrate, 6 g fat; n = 20) after exercise and each night before sleep. Maximal strength was assessed by 1-repetition-maximum (1RM) strength testing, and muscle hypertrophy was assessed at the whole-body (dual-energy X-ray absorptiometry), upper leg (computed tomography scan), and muscle fiber (biopsy) levels. Muscle protein synthesis rates were assessed during week 12 of training with the use of deuterated water (2H2O) administration. Results: Leg-extension 1RM increased in both groups (placebo: 88 ± 3 to 104 ± 4 kg; protein: 85 ± 3 to 102 ± 4 kg; P < 0.001), with no differences between groups. Quadriceps cross-sectional area (placebo: 67.8 ± 1.7 to 73.5 ± 2.0 cm2; protein: 68.4 ± 1.4 to 72.3 ± 1.4 cm2; P < 0.001) increased in both groups, with no differences between groups. Muscle fiber hypertrophy occurred in type II muscle fibers (placebo: 5486 ± 418 to 6492 ± 429 µm2; protein: 5367 ± 301 to 6259 ± 391 µm2; P < 0.001), with no differences between groups. Muscle protein synthesis rates were 1.62% ± 0.06% and 1.57% ± 0.05%/d in the placebo and protein groups, respectively, with no differences between groups. Conclusion: Protein supplementation after exercise and before sleep does not further augment skeletal muscle mass or strength gains during resistance exercise training in active older men. This study was registered at the Netherlands Trial Registry (www.trialregister.nl) as NTR5082.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Sono/fisiologia , Idoso , Aminoácidos , Cromo , Esquema de Medicação , Humanos , Masculino , Ácidos Nicotínicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA