Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PhytoKeys ; 159: 1-34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973386

RESUMO

A putatively monophyletic group of annual Silene species is revised taxonomically and described as the new section S. sect. Arenosae. The species of this section were previously treated as a part of a widely circumscribed and polyphyletic S. sect. Rigidulae. Silene sect. Arenosae as circumscribed here consists of nine species. Members of the section show a predominantly E Mediterranean to SW Asian distribution pattern from Turkey southward to Egypt and eastward to Iran and Pakistan, although most of the species have a limited distribution range. The species of S. sect. Arenosae are characterized by narrowly lanceolate calyx teeth, which are often highly polymorphic, and lanceolate to oblanceolate (non-spathulate) basal leaves. The provided taxonomic revision is based on morphological characters and supported by phylogenetic analyses of two nuclear loci (nrITS and an intron of the RPB2 gene) and one chloroplast locus (the intron of the rps16 gene). The species descriptions are formalized using a novel implementation of the Prometheus Description Model.

2.
BMC Evol Biol ; 18(1): 9, 2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29374461

RESUMO

BACKGROUND: Whole genome duplication plays a central role in plant evolution. There are two main classes of polyploid formation: autopolyploids which arise within one species by doubling of similar homologous genomes; in contrast, allopolyploidy (hybrid polyploidy) arise via hybridization and subsequent doubling of nonhomologous (homoeologous) genomes. The distinction between polyploid origins can be made using gene phylogenies, if alleles from each genome can be correctly retrieved. We examined whether two closely related tetraploid Mediterranean shrubs (Medicago arborea and M. strasseri) have an allopolyploid origin - a question that has remained unsolved despite substantial previous research. We sequenced and analyzed ten low-copy nuclear genes from these and related species, phasing all alleles. To test the efficacy of allele phasing on the ability to recover the evolutionary origin of polyploids, we compared these results to analyses using unphased sequences. RESULTS: In eight of the gene trees the alleles inferred from the tetraploids formed two clades, in a non-sister relationship. Each of these clades was more closely related to alleles sampled from other species of Medicago, a pattern typical of allopolyploids. However, we also observed that alleles from one of the remaining genes formed two clades that were sister to one another, as is expected for autopolyploids. Trees inferred from unphased sequences were very different, with the tetraploids often placed in poorly supported and different positions compared to results obtained using phased alleles. CONCLUSIONS: The complex phylogenetic history of M. arborea and M. strasseri is explained predominantly by shared allotetraploidy. We also observed that an increase in woodiness is correlated with polyploidy in this group of species and present a new possibility that woodiness could be a transgressive phenotype. Correctly phased homoeologues are likely to be critical for inferring the hybrid origin of allopolyploid species, when most genes retain more than one homoeologue. Ignoring homoeologous variation by merging the homoeologues can obscure the signal of hybrid polyploid origins and produce inaccurate results.


Assuntos
Alelos , Medicago/genética , Poliploidia , Sequência de Bases , Evolução Molecular , Genes de Plantas , Hibridização Genética , Filogenia , Densidade Demográfica , Especificidade da Espécie
3.
Front Genet ; 9: 639, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619464

RESUMO

The Andes are an important biogeographic region in South America extending for about 8000 km from Venezuela to Argentina. They are - along with the Patagonian steppes - the main distribution area of ca. 18 polyploid species of Silene sect. Physolychnis. Using nuclear ITS and plastid psbE-petG and matK sequences, flow cytometric ploidy level estimations and chromosome counts, and including 13 South American species, we explored the origin and diversification of this group. Our data suggest a single, late Pliocene or early Pleistocene migration of the North American S. verecunda lineage to South America, which was followed by dispersal and diversification of this tetraploid lineage in the Andes, other Argentinian mountain ranges and the Patagonian steppes. Later in the Pleistocene South American populations hybridized with the S. uralensis lineage, which led to allopolyploidisation and origin of decaploid S. chilensis and S. echegarayi occurring at high elevations. Additionally, we show that the morphological differentiation in leaf shape correlated with divergent habitats (high elevation Andes vs. lower elevation Patagonian steppes) is also supported phylogenetically, especially in the ITS tree. Lastly, the species boundaries among the narrow-leaved Patagonian steppe species are poorly resolved and need more thorough taxonomic revision.

4.
Syst Biol ; 64(3): 448-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25604357

RESUMO

There is a rising awareness that species trees are best inferred from multiple loci while taking into account processes affecting individual gene trees, such as substitution model error (failure of the model to account for the complexity of the data) and coalescent stochasticity (presence of incomplete lineage sorting [ILS]). Although most studies have been carried out in the context of dichotomous species trees, these processes operate also in more complex evolutionary histories involving multiple hybridizations and polyploidy. Recently, methods have been developed that accurately handle ILS in allopolyploids, but they are thus far restricted to networks of diploids and tetraploids. We propose a procedure that improves on this limitation by designing a workflow that assigns homoeologs to hypothetical diploid ancestral genomes prior to genome tree construction. Conflicting assignment hypotheses are evaluated against substitution model error and coalescent stochasticity. Incongruence that cannot be explained by stochastic mechanisms needs to be explained by other processes (e.g., homoploid hybridization or paralogy). The data can then be filtered to build multilabeled genome phylogenies using inference methods that can recover species trees, either in the face of substitution model error and coalescent stochasticity alone, or while simultaneously accounting for hybridization. Methods are already available for folding the resulting multilabeled genome phylogeny into a network. We apply the workflow to the reconstruction of the reticulate phylogeny of the plant genus Fumaria (Papaveraceae) with ploidal levels ranging from 2[Formula: see text] to 14[Formula: see text]. We describe the challenges in recovering nuclear NRPB2 homoeologs in high ploidy species while combining in vivo cloning and direct sequencing techniques. Using parametric bootstrapping simulations we assign nuclear homoeologs and chloroplast sequences (four concatenated loci) to their common hypothetical diploid ancestral genomes. As these assignments hinge on effective population size assumptions, we investigate how varying these assumptions impacts the recovered multilabeled genome phylogeny.


Assuntos
Classificação/métodos , Fumaria/classificação , Fumaria/genética , Genoma de Planta/genética , Filogenia , Poliploidia , Cloroplastos/genética , Homologia de Sequência
5.
Syst Biol ; 64(1): 84-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281848

RESUMO

Allopolyploidization accounts for a significant fraction of speciation events in many eukaryotic lineages. However, existing phylogenetic and dating methods require tree-like topologies and are unable to handle the network-like phylogenetic relationships of lineages containing allopolyploids. No explicit framework has so far been established for evaluating competing network topologies, and few attempts have been made to date phylogenetic networks. We used a four-step approach to generate a dated polyploid species network for the cosmopolitan angiosperm genus Viola L. (Violaceae Batch.). The genus contains ca 600 species and both recent (neo-) and more ancient (meso-) polyploid lineages distributed over 16 sections. First, we obtained DNA sequences of three low-copy nuclear genes and one chloroplast region, from 42 species representing all 16 sections. Second, we obtained fossil-calibrated chronograms for each nuclear gene marker. Third, we determined the most parsimonious multilabeled genome tree and its corresponding network, resolved at the section (not the species) level. Reconstructing the "correct" network for a set of polyploids depends on recovering all homoeologs, i.e., all subgenomes, in these polyploids. Assuming the presence of Viola subgenome lineages that were not detected by the nuclear gene phylogenies ("ghost subgenome lineages") significantly reduced the number of inferred polyploidization events. We identified the most parsimonious network topology from a set of five competing scenarios differing in the interpretation of homoeolog extinctions and lineage sorting, based on (i) fewest possible ghost subgenome lineages, (ii) fewest possible polyploidization events, and (iii) least possible deviation from expected ploidy as inferred from available chromosome counts of the involved polyploid taxa. Finally, we estimated the homoploid and polyploid speciation times of the most parsimonious network. Homoploid speciation times were estimated by coalescent analysis of gene tree node ages. Polyploid speciation times were estimated by comparing branch lengths and speciation rates of lineages with and without ploidy shifts. Our analyses recognize Viola as an old genus (crown age 31 Ma) whose evolutionary history has been profoundly affected by allopolyploidy. Between 16 and 21 allopolyploidizations are necessary to explain the diversification of the 16 major lineages (sections) of Viola, suggesting that allopolyploidy has accounted for a high percentage-between 67% and 88%-of the speciation events at this level. The theoretical and methodological approaches presented here for (i) constructing networks and (ii) dating speciation events within a network, have general applicability for phylogenetic studies of groups where allopolyploidization has occurred. They make explicit use of a hitherto underexplored source of ploidy information from chromosome counts to help resolve phylogenetic cases where incomplete sequence data hampers network inference. Importantly, the coalescent-based method used herein circumvents the assumption of tree-like evolution required by most techniques for dating speciation events.


Assuntos
Filogenia , Viola/classificação , Viola/genética , Evolução Molecular , Fósseis , Poliploidia , Tempo
6.
Syst Biol ; 62(3): 467-78, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23427289

RESUMO

Polyploidy is an important speciation mechanism, particularly in land plants. Allopolyploid species are formed after hybridization between otherwise intersterile parental species. Recent theoretical progress has led to successful implementation of species tree models that take population genetic parameters into account. However, these models have not included allopolyploid hybridization and the special problems imposed when species trees of allopolyploids are inferred. Here, 2 new models for the statistical inference of the evolutionary history of allopolyploids are evaluated using simulations and demonstrated on 2 empirical data sets. It is assumed that there has been a single hybridization event between 2 diploid species resulting in a genomic allotetraploid. The evolutionary history can be represented as a species network or as a multilabeled species tree, in which some pairs of tips are labeled with the same species. In one of the models (AlloppMUL), the multilabeled species tree is inferred directly. This is the simplest model and the most widely applicable, since fewer assumptions are made. The second model (AlloppNET) incorporates the hybridization event explicitly which means that fewer parameters need to be estimated. Both models are implemented in the BEAST framework. Simulations show that both models are useful and that AlloppNET is more accurate if the assumptions it is based on are valid. The models are demonstrated on previously analyzed data from the genera Pachycladon (Brassicaceae) and Silene (Caryophyllaceae).


Assuntos
Brassicaceae/genética , Evolução Molecular , Poliploidia , Silene/genética , Teorema de Bayes , Hibridização Genética , Modelos Genéticos
7.
New Phytol ; 198(2): 579-592, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23379348

RESUMO

Aquilegia is a well-known model system in the field of evolutionary biology, but obtaining a resolved and well-supported phylogenetic reconstruction for the genus has been hindered by its recent and rapid diversification. Here, we applied 454 next-generation sequencing to PCR amplicons of 21 of the most rapidly evolving regions of the plastome to generate c. 24 kb of sequences from each of 84 individuals from throughout the genus. The resulting phylogeny has well-supported resolution of the main lineages of the genus, although recent diversification such as in the European taxa remains unresolved. By producing a chronogram of the whole Ranunculaceae family based on published data, we inferred calibration points for dating the Aquilegia radiation. The genus originated in the upper Miocene c. 6.9 million yr ago (Ma) in Eastern Asia, and diversification occurred c. 4.8 Ma with the split of two main clades, one colonizing North America, and the other Western Eurasia through the mountains of Central Asia. This was followed by a back-to-Asia migration, originating from the European stock using a North Asian route. These results provide the first backbone phylogeny and spatiotemporal reconstruction of the Aquilegia radiation, and constitute a robust framework to address the adaptative nature of speciation within the group.


Assuntos
Aquilegia/genética , DNA de Cloroplastos/genética , Evolução Molecular , Análise de Sequência de DNA/métodos , Sequência de Bases , Análise por Conglomerados , Filogenia , Análise de Componente Principal , Fatores de Tempo
8.
J Theor Biol ; 322: 1-6, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23318988

RESUMO

We consider a stochastic process for the generation of species which combines a Yule process with a simple model for hybridization between pairs of co-existent species. We assume that the origin of the process, when there was one species, occurred at an unknown time in the past, and we condition the process on producing n species via the Yule process and a single hybridization event. We prove results about the distribution of the time of the hybridization event. In particular we calculate a formula for all moments and show that under various conditions, the distribution tends to an exponential with rate twice that of the birth rate for the Yule process.


Assuntos
Hibridização Genética , Modelos Genéticos , Animais , Especiação Genética , Filogenia , Poliploidia , Especificidade da Espécie , Processos Estocásticos , Fatores de Tempo
9.
Mol Ecol Resour ; 12(1): 128-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21943046

RESUMO

Direct Sanger sequencing of polymerase chain reaction (PCR)-amplified nuclear genes leads to polymorphic sequences when allelic variation is present. To overcome this problem, most researchers subclone the PCR products to separate alleles. An alternative is to directly sequence the separate alleles using allele-specific primers. We tested two methods to enhance the specificity of allele-specific primers for use in direct sequencing: using short primers and amplification refractory mutation system (ARMS) technique. By shortening the allele-specific primer to 15-13 nucleotides, the single mismatch in the ultimate base of the primer is enough to hinder the amplification of the nontarget allele in direct sequencing and recover only the targeted allele at high accuracy. The deliberate addition of a second mismatch, as implemented in the ARMS technique, was less successful and seems better suited for allele-specific amplification in regular PCR rather than in direct sequencing.


Assuntos
Primers do DNA/genética , Fumaria/genética , Dosagem de Genes , Alelos , Clonagem Molecular , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da Espécie
10.
Syst Biol ; 61(1): 107-26, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21918178

RESUMO

The phylogenies of allopolyploids take the shape of networks and cannot be adequately represented as bifurcating trees. Especially for high polyploids (i.e., organisms with more than six sets of nuclear chromosomes), the signatures of gene homoeolog loss, deep coalescence, and polyploidy may become confounded, with the result that gene trees may be congruent with more than one species network. Herein, we obtained the most parsimonious species network by objective comparison of competing scenarios involving polyploidization and homoeolog loss in a high-polyploid lineage of violets (Viola, Violaceae) mostly or entirely restricted to North America, Central America, or Hawaii. We amplified homoeologs of the low-copy nuclear gene, glucose-6-phosphate isomerase (GPI), by single-molecule polymerase chain reaction (PCR) and the chloroplast trnL-F region by conventional PCR for 51 species and subspecies. Topological incongruence among GPI homoeolog subclades, owing to deep coalescence and two instances of putative loss (or lack of detection) of homoeologs, were reconciled by applying the maximum tree topology for each subclade. The most parsimonious species network and the fossil-based calibration of the homoeolog tree favored monophyly of the high polyploids, which has resulted from allodecaploidization 9-14 Ma, involving sympatric ancestors from the extant Viola sections Chamaemelanium (diploid), Plagiostigma (paleotetraploid), and Viola (paleotetraploid). Although two of the high-polyploid lineages (Boreali-Americanae, Pedatae) remained decaploid, recurrent polyploidization with tetraploids of section Plagiostigma within the last 5 Ma has resulted in two 14-ploid lineages (Mexicanae, Nosphinium) and one 18-ploid lineage (Langsdorffianae). This implies a more complex phylogenetic and biogeographic origin of the Hawaiian violets (Nosphinium) than that previously inferred from rDNA data and illustrates the necessity of considering polyploidy in phylogenetic and biogeographic reconstruction.


Assuntos
Evolução Molecular , Filogenia , Viola/classificação , Viola/genética , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Glucose-6-Fosfato Isomerase/genética , Havaí , América do Norte , Reação em Cadeia da Polimerase , Poliploidia , RNA de Plantas/genética , Análise de Sequência de DNA , Viola/química
11.
BMC Evol Biol ; 10: 45, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20158916

RESUMO

BACKGROUND: DNA-dependent RNA polymerase IV and V (Pol IV and V) are multi-subunit enzymes occurring in plants. The origin of Pol V, specific to angiosperms, from Pol IV, which is present in all land plants, is linked to the duplication of the gene encoding the largest subunit and the subsequent subneofunctionalization of the two paralogs (NRPD1 and NRPE1). Additional duplication of the second-largest subunit, NRPD2/NRPE2, has happened independently in at least some eudicot lineages, but its paralogs are often subject to concerted evolution and gene death and little is known about their evolution nor their affinity with Pol IV and Pol V. RESULTS: We sequenced a approximately 1500 bp NRPD2/E2-like fragment from 18 Viola species, mostly paleopolyploids, and 6 non-Viola Violaceae species. Incongruence between the NRPD2/E2-like gene phylogeny and species phylogeny indicates a first duplication of NRPD2 relatively basally in Violaceae, with subsequent sorting of paralogs in the descendants, followed by a second duplication in the common ancestor of Viola and Allexis. In Viola, the mutation pattern suggested (sub-) neofunctionalization of the two NRPD2/E2-like paralogs, NRPD2/E2-a and NRPD2/E2-b. The dN/dS ratios indicated that a 54 bp region exerted strong positive selection for both paralogs immediately following duplication. This 54 bp region encodes a domain that is involved in the binding of the Nrpd2 subunit with other Pol IV/V subunits, and may be important for correct recognition of subunits specific to Pol IV and Pol V. Across all Viola taxa 73 NRPD2/E2-like sequences were obtained, of which 23 (32%) were putative pseudogenes - all occurring in polyploids. The NRPD2 duplication was conserved in all lineages except the diploid MELVIO clade, in which NRPD2/E2-b was lost, and its allopolyploid derivates from hybridization with the CHAM clade, section Viola and section Melanium, in which NRPD2/E2-a occurred in multiple copies while NRPD2/E2-b paralogs were either absent or pseudogenized. CONCLUSIONS: Following the relatively recent split of Pol IV and Pol V, our data indicate that these two multi-subunit enzymes are still in the process of specialization and each acquiring fully subfunctionalized copies of their subunit genes. Even after specialization, the NRPD2/E2-like paralogs are prone to pseudogenization and gene conversion and NRPD2 and NRPE2 copy number is a highly dynamic process modulated by allopolyploidy and gene death.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Duplicação Gênica , Genes de Plantas , Violaceae/enzimologia , Violaceae/genética , Evolução Molecular , Filogenia , Pseudogenes
12.
BMC Evol Biol ; 9: 216, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19715596

RESUMO

BACKGROUND: Gene trees that arise in the context of reconstructing the evolutionary history of polyploid species are often multiply-labeled, that is, the same leaf label can occur several times in a single tree. This property considerably complicates the task of forming a consensus of a collection of such trees compared to usual phylogenetic trees. RESULTS: We present a method for computing a consensus tree of multiply-labeled trees. As with the well-known greedy consensus tree approach for phylogenetic trees, our method first breaks the given collection of gene trees into a set of clusters. It then aims to insert these clusters one at a time into a tree, starting with the clusters that are supported by most of the gene trees. As the problem to decide whether a cluster can be inserted into a multiply-labeled tree is computationally hard, we have developed a heuristic method for solving this problem. CONCLUSION: We illustrate the applicability of our method using two collections of trees for plants of the genus Silene, that involve several allopolyploids at different levels.


Assuntos
Filogenia , Poliploidia , Algoritmos , Animais , Plantas/classificação , Plantas/genética
13.
Syst Biol ; 56(3): 467-76, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17562470

RESUMO

Polyploidy, the duplication of entire genomes, plays a major role in plant evolution. In allopolyploids, genome duplication is associated with hybridization between two or more divergent genomes. Successive hybridization and polyploidization events can build up species complexes of allopolyploids with complicated network-like histories, and the evolutionary history of many plant groups cannot be adequately represented by phylogenetic trees because of such reticulate events. The history of complex genome mergings within a high-polyploid species complex in the genus Cerastium (Caryophyllaceae) is here untangled by the use of a network algorithm and noncoding sequences of a low-copy number gene. The resulting network illustrates how hybridization and polyploidization have acted as key evolutionary processes in creating a plant group where high-level allopolyploids clearly outnumber extant parental genomes.


Assuntos
Genoma de Planta/genética , Filogenia , Poliploidia , Sequência de Bases , Primers do DNA/química , Evolução Molecular , Dados de Sequência Molecular , RNA Polimerase II/genética
14.
Am J Bot ; 94(3): 330-49, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21636405

RESUMO

Nuclear DNA sequences from introns of the low-copy nuclear gene family encoding the second largest subunit of RNA polymerases and the ribosomal internal transcribed spacer (ITS) regions, combined with the psbE-petL spacer and the rps16 intron from the chloroplast genome were used to infer origins and phylogenetic relationships of North American polyploid Silene species and their closest relatives. Although the vast majority of North American Silene species are polyploid, which contrasts to the diploid condition dominating in other parts of the world, the phylogenetic analyses rejected a single origin of the North American polyploids. One lineage consists of tetraploid Silene menziesii and its diploid allies. A second lineage, Physolychnis s.l., consists of Arctic, European, Asian, and South American taxa in addition to the majority of the North American polyploids. The hexaploid S. hookeri is derived from an allopolyploidization between these two lineages. The tetraploid S. nivea does not belong to any of these lineages, but is closely related to the European diploid S. baccifera. The poor resolution within Physolychnis s.l. may be attributed to rapid radiation, recombination among homoeologues, homoplasy, or any combination of these factors. No extant diploid donors could be identified in Physolychnis s.l.

15.
Mol Biol Evol ; 23(9): 1784-91, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16798795

RESUMO

In recent studies, phylogenetic networks have been derived from so-called multilabeled trees in order to understand the origins of certain polyploids. Although the trees used in these studies were constructed using sophisticated techniques in phylogenetic analysis, the presented networks were inferred using ad hoc arguments that cannot be easily extended to larger, more complicated examples. In this paper, we present a general method for constructing such networks, which takes as input a multilabeled phylogenetic tree and outputs a phylogenetic network with certain desirable properties. To illustrate the applicability of our method, we discuss its use in reconstructing the evolutionary history of plant allopolyploids. We conclude with a discussion concerning possible future directions. The network construction method has been implemented and is freely available for use from http://www.uea.ac.uk/ approximately a043878/padre.html.


Assuntos
Modelos Genéticos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Filogenia , Poliploidia , Algoritmos , Evolução Molecular , Modelos Estatísticos
16.
Mol Phylogenet Evol ; 32(3): 695-710, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15288048

RESUMO

Polyploid evolution has been of major importance in the arctic flora, but rarely addressed on the full circumpolar scale. Herein we study the allopolyploid Draba lactea and its close allies, which form a taxonomically intricate arctic-alpine complex including diploids, tetraploids, and hexaploids. Based on samples from the entire circumpolar area, we inferred the origins of polyploids in this complex using cloned DNA sequences from two nuclear regions (one intron from a gene encoding a second largest subunit in the RNA polymerase family, RPD2, and the ribosomal internal transcribed spacer region, ITS) and DNA fingerprints (random amplified polymorphic DNAs, RAPDs). Although D. lactea and all other polyploids examined in Draba are genetic alloploids showing fixed heterozygosity, the data obtained in the present study suggest that each of the polyploids analyzed here may have originated from a single diploid lineage: hexaploid D. lactea via tetraploid D. lactea from the D. palanderiana lineage (not from the D. fladnizensis and D. nivalis lineages as previously hypothesized), the tetraploid D. turczaninovii from the D. fladnizensis lineage, the tetraploid D. porsildii from the D. lonchocarpa lineage, and a tetraploid here named Draba spB from the D. nivalis lineage. Draba lactea has probably originated several times in the Beringian area, and it is not necessary to invoke complex origins based on a combination of different species lineages as previously suggested.


Assuntos
Brassicaceae/genética , Evolução Molecular , Filogenia , Poliploidia , Regiões Árticas , Sequência de Bases , Primers do DNA , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , RNA Polimerase II/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA