Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 94: 103125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428272

RESUMO

In this paper, we study pseudo-labelling. Pseudo-labelling employs raw inferences on unlabelled data as pseudo-labels for self-training. We elucidate the empirical successes of pseudo-labelling by establishing a link between this technique and the Expectation Maximisation algorithm. Through this, we realise that the original pseudo-labelling serves as an empirical estimation of its more comprehensive underlying formulation. Following this insight, we present a full generalisation of pseudo-labels under Bayes' theorem, termed Bayesian Pseudo Labels. Subsequently, we introduce a variational approach to generate these Bayesian Pseudo Labels, involving the learning of a threshold to automatically select high-quality pseudo labels. In the remainder of the paper, we showcase the applications of pseudo-labelling and its generalised form, Bayesian Pseudo-Labelling, in the semi-supervised segmentation of medical images. Specifically, we focus on: (1) 3D binary segmentation of lung vessels from CT volumes; (2) 2D multi-class segmentation of brain tumours from MRI volumes; (3) 3D binary segmentation of whole brain tumours from MRI volumes; and (4) 3D binary segmentation of prostate from MRI volumes. We further demonstrate that pseudo-labels can enhance the robustness of the learned representations. The code is released in the following GitHub repository: https://github.com/moucheng2017/EMSSL.


Assuntos
Neoplasias Encefálicas , Motivação , Masculino , Humanos , Teorema de Bayes , Algoritmos , Encéfalo , Processamento de Imagem Assistida por Computador
2.
IEEE Trans Med Imaging ; 42(10): 2988-2999, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37155408

RESUMO

Semi-supervised learning (SSL) is a promising machine learning paradigm to address the ubiquitous issue of label scarcity in medical imaging. The state-of-the-art SSL methods in image classification utilise consistency regularisation to learn unlabelled predictions which are invariant to input level perturbations. However, image level perturbations violate the cluster assumption in the setting of segmentation. Moreover, existing image level perturbations are hand-crafted which could be sub-optimal. In this paper, we propose MisMatch, a semi-supervised segmentation framework based on the consistency between paired predictions which are derived from two differently learnt morphological feature perturbations. MisMatch consists of an encoder and two decoders. One decoder learns positive attention for foreground on unlabelled data thereby generating dilated features of foreground. The other decoder learns negative attention for foreground on the same unlabelled data thereby generating eroded features of foreground. We normalise the paired predictions of the decoders, along the batch dimension. A consistency regularisation is then applied between the normalised paired predictions of the decoders. We evaluate MisMatch on four different tasks. Firstly, we develop a 2D U-net based MisMatch framework and perform extensive cross-validation on a CT-based pulmonary vessel segmentation task and show that MisMatch statistically outperforms state-of-the-art semi-supervised methods. Secondly, we show that 2D MisMatch outperforms state-of-the-art methods on an MRI-based brain tumour segmentation task. We then further confirm that 3D V-net based MisMatch outperforms its 3D counterpart based on consistency regularisation with input level perturbations, on two different tasks including, left atrium segmentation from 3D CT images and whole brain tumour segmentation from 3D MRI images. Lastly, we find that the performance improvement of MisMatch over the baseline might originate from its better calibration. This also implies that our proposed AI system makes safer decisions than the previous methods.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Calibragem , Átrios do Coração , Aprendizado de Máquina , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
3.
Phys Rev Lett ; 111(1): 015002, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23863006

RESUMO

In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA