Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pathogens ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145476

RESUMO

Pseudomonas aeruginosa is an important pathogen that can adhere to host tissues and epithelial surfaces, especially during chronic infections such as cystic fibrosis (CF) lung infections. The effect of ceragenins and antimicrobial peptides (AMP) on this colonization was investigated in a co-culture infection model. After determining the antimicrobial effects of the substances on P. aeruginosa planktonic cells, their cytotoxicity on the A549 cell line was also determined. After the A549 cell line was infected with P. aeruginosa, the effect of antimicrobials on intracellular bacteria as well as the effects in inhibiting the adhesion of P. aeruginosa were investigated. In addition, LDH release from cells was determined by performing an LDH experiment to understand the cytotoxicity of bacterial infection and antimicrobial treatment on cells. CSA-131 was determined as the antimicrobial agent with the highest antimicrobial activity, while the antimicrobial effects of AMPs were found to be much lower than those of ceragenins. The antimicrobial with the lowest IC50 value was determined as the combination of CSA-131 with Pluronic F127. CSA-13 has been determined to be the most effective antimicrobial with its effectiveness to both intracellular bacteria and bacterial adhesion. Nevertheless, further safety, efficacy, toxicity, and pharmacological studies of ceragenins are needed to evaluate clinical utility.

2.
J Antibiot (Tokyo) ; 75(7): 403-409, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35562592

RESUMO

Burkholderia cepacia complex (Bcc) species are aerobic, Gram-negative and non-fermantative bacilli. Bcc can cause clinical symptoms in patients with cystic fibrosis, ranging from asymptomatic carriage to fatal pneumonia. A pressing need exists for new antimicrobial agents that target Bcc. Ceragenins, CSA-13, CSA-131 and CSA-131 with 5% Pluronic® F127 (CSA-131P), were evaluated against Bcc clinical isolates (n = 42). MICs of ceragenins and conventional antibiotics were determined. Time-kill curve experiments were performed with 1x, 4x MICs of ceragenins and sulfamethoxazole-trimethoprim (SXT), levofloxacin. MIC50/ MIC90 results (mg l-1) of CSA-13, CSA-131 and CSA-131P were determined as 16/64, 16/128 and 16/128, respectively. CSA-13 and CSA-131 showed bactericidal activity. CSA-13 - levofloxacin combination displayed synergistic activity against Bcc. First-generation (CSA-13) and second-generation (CSA-131 and CSA-131P) ceragenins have significant antimicrobial effects on Bcc. The findings of this study demonstrate that combinations of ceragenins with currently marketed antibiotics could be synergistic in vitro against Bcc isolates. These results suggest that combination therapy with conventional antibiotics could be an alternative approach for treating Bcc infections in the future.


Assuntos
Complexo Burkholderia cepacia , Antibacterianos/farmacologia , Humanos , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Esteroides
3.
Z Naturforsch C J Biosci ; 76(11-12): 443-450, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33915040

RESUMO

Candida spp. can form biofilms on mucosal surfaces and epithelial cells as well as on devices implanted in the body such as catheters and dentures, which are thought to underlie the most recalcitrant infections. It was aimed to show antifungal and antibiofilm activities of oregano oil (Origanum onites). The antifungal activities of some essential oils were investigated against C. spp. and among them, oregano oil was found to be the most effective oil and further biofilm studies were conducted with it. Oregano oil inhibited biofilm adhesion and formation of C. spp. and mature biofilms and also displayed the ability to reduce biofilm formation when they were allowed to form on surfaces previously coated with oil (up to 50% inhibition rates). In addition, oregano oil was found to be effective against dual biofilms of Candida albicans + Staphyloccocus aureus at different concentrations. This study suggests that O. onites essential oil has useful antibiofilm effects against C. spp. The inhibitory effects of O. onites essential oil, against C. spp., were demonstrated for the first time. It also had antifungal effect on biofilm formation and established biofilm even at MIC level.


Assuntos
Óleos Voláteis , Origanum , Antifúngicos/farmacologia , Biofilmes , Candida , Candida albicans , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia
4.
J Antimicrob Chemother ; 76(2): 443-450, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33094334

RESUMO

BACKGROUND: Stenotrophomonas maltophilia is a Gram-negative bacterium resistant to several antibiotics and its prevalence in cystic fibrosis (CF) patients is increasing. OBJECTIVES: To evaluate the effects of ceragenins, non-peptide mimics of antimicrobial peptides, against both planktonic and biofilm forms of S. maltophilia and the cytotoxicity of ceragenins to the IB3-1 CF cell line. METHODS: Ceragenin CSA-131, with and without 5% Pluronic® F127 (a non-ionic amphiphilic poloxamer), and ceragenin CSA-13 were evaluated against S. maltophilia clinical isolates (n = 40). MICs and MBCs of ceragenins and conventional antibiotics were determined. Time-kill curve experiments were performed with 1×, 2× and 4× MICs of ceragenins. The highest non-cytotoxic concentrations of ceragenins against IB3-1, a CF cell line, were determined by MTT assay. The effects of ceragenins against biofilm adhesion, formation and mature biofilms were investigated. RESULTS: CSA-131 with Pluronic® F127 displayed the lowest MICs (MIC50/MIC90: 1/2 mg/L) followed by CSA-131 (MIC50/MIC90: 2/4 mg/L), while those of CSA-13 were much higher (MIC50/MIC90: 16/32 mg/L). According to time-kill curve results, all concentrations at 4× MICs of ceragenins showed bactericidal activity (3 log reduction) after 4 h. While CSA-131 and CSA-131-poloxamer inhibited biofilm adhesion and formation by 87.74% and 83.42%, respectively, after 24 h, CSA-131 was more effective on mature biofilms. Formulating CSA-131 in poloxamer micelles did not affect the cytotoxicity of CSA-131 to IB3-1 cells. CONCLUSIONS: CSA-131 could be a potential antimicrobial agent for the treatment of S. maltophilia infections in CF, due to its low cytotoxicity on the CF cell line and good antimicrobial and antibiofilm effects.


Assuntos
Fibrose Cística , Stenotrophomonas maltophilia , Antibacterianos/farmacologia , Biofilmes , Fibrose Cística/complicações , Humanos , Testes de Sensibilidade Microbiana , Poloxâmero , Esteroides
5.
Proc Natl Acad Sci U S A ; 116(41): 20700-20706, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31527267

RESUMO

Microbial invasion into the intestinal mucosa after allogeneic hematopoietic cell transplantation (allo-HCT) triggers neutrophil activation and requires antibiotic interventions to prevent sepsis. However, antibiotics lead to a loss of microbiota diversity, which is connected to a higher incidence of acute graft-versus-host disease (aGVHD). Antimicrobial therapies that eliminate invading bacteria and reduce neutrophil-mediated damage without reducing the diversity of the microbiota are therefore highly desirable. A potential solution would be the use of antimicrobial antibodies that target invading pathogens, ultimately leading to their elimination by innate immune cells. In a mouse model of aGVHD, we investigated the potency of active and passive immunization against the conserved microbial surface polysaccharide poly-N-acetylglucosamine (PNAG) that is expressed on numerous pathogens. Treatment with monoclonal or polyclonal antibodies to PNAG (anti-PNAG) or vaccination against PNAG reduced aGVHD-related mortality. Anti-PNAG treatment did not change the intestinal microbial diversity as determined by 16S ribosomal DNA sequencing. Anti-PNAG treatment reduced myeloperoxidase activation and proliferation of neutrophil granulocytes (neutrophils) in the ileum of mice developing GVHD. In vitro, anti-PNAG treatment showed high antimicrobial activity. The functional role of neutrophils was confirmed by using neutrophil-deficient LysMcreMcl1fl/fl mice that had no survival advantage under anti-PNAG treatment. In summary, the control of invading bacteria by anti-PNAG treatment could be a novel approach to reduce the uncontrolled neutrophil activation that promotes early GVHD and opens a new avenue to interfere with aGVHD without affecting commensal intestinal microbial diversity.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Bactérias/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Imunização Passiva/métodos , Intestinos/imunologia , Ativação de Neutrófilo/imunologia , Polissacarídeos Bacterianos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Polissacarídeos Bacterianos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA