Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9364, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654065

RESUMO

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Assuntos
Domínio Catalítico , Cistationina gama-Liase , Sulfeto de Hidrogênio , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/química , Cristalografia por Raios X , Especificidade por Substrato , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálise
2.
Nat Commun ; 14(1): 3496, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311743

RESUMO

Sialic acid-binding Ig-like lectin 15 (Siglec-15) is an immune modulator and emerging cancer immunotherapy target. However, limited understanding of its structure and mechanism of action restrains the development of drug candidates that unleash its full therapeutic potential. In this study, we elucidate the crystal structure of Siglec-15 and its binding epitope via co-crystallization with an anti-Siglec-15 blocking antibody. Using saturation transfer-difference nuclear magnetic resonance (STD-NMR) spectroscopy and molecular dynamics simulations, we reveal Siglec-15 binding mode to α(2,3)- and α(2,6)-linked sialic acids and the cancer-associated sialyl-Tn (STn) glycoform. We demonstrate that binding of Siglec-15 to T cells, which lack STn expression, depends on the presence of α(2,3)- and α(2,6)-linked sialoglycans. Furthermore, we identify the leukocyte integrin CD11b as a Siglec-15 binding partner on human T cells. Collectively, our findings provide an integrated understanding of the structural features of Siglec-15 and emphasize glycosylation as a crucial factor in controlling T cell responses.


Assuntos
Integrinas , Linfócitos T , Humanos , Cristalização , Epitopos , Glicosilação
3.
Protein Sci ; 32(4): e4619, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36883335

RESUMO

Cystathionine γ-lyase (CGL) is a PLP-dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL-catalyzed process consists of an α,γ-elimination reaction that breaks down cystathionine into cysteine, α-ketobutyrate, and ammonia. In some species, the enzyme can alternatively use cysteine as a substrate, resulting in the production of hydrogen sulfide (H2 S). Importantly, inhibition of the enzyme and consequently of its H2 S production activity, makes multiresistant bacteria considerably more susceptible to antibiotics. Other organisms, such as Toxoplasma gondii, the causative agent of toxoplasmosis, encode a CGL enzyme (TgCGL) that almost exclusively catalyzes the canonical process, with only minor reactivity to cysteine. Interestingly, the substitution of N360 by a serine (the equivalent amino acid residue in the human enzyme) at the active site changes the specificity of TgCGL for the catalysis of cystathionine, resulting in an enzyme that can cleave both the CγS and the CßS bond of cystathionine. Based on these findings and to deepen the molecular basis underlying the enzyme-substrate specificity, we have elucidated the crystal structures of native TgCGL and the variant TgCGL-N360S from crystals grown in the presence of cystathionine, cysteine, and the inhibitor d,l-propargylglycine (PPG). Our structures reveal the binding mode of each molecule within the catalytic cavity and help explain the inhibitory behavior of cysteine and PPG. A specific inhibitory mechanism of TgCGL by PPG is proposed.


Assuntos
Cistationina gama-Liase , Toxoplasma , Humanos , Cistationina gama-Liase/química , Cistationina gama-Liase/metabolismo , Cisteína , Toxoplasma/metabolismo , Cistationina/metabolismo
4.
Comput Struct Biotechnol J ; 19: 3542-3555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194677

RESUMO

Cysteine plays a major role in the redox homeostasis and antioxidative defense mechanisms of many parasites of the phylum Apicomplexa. Of relevance to human health is Toxoplasma gondii, the causative agent of toxoplasmosis. A major route of cysteine biosynthesis in this parasite is the reverse transsulfuration pathway involving two key enzymes cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CGL). CBS from T. gondii (TgCBS) catalyzes the pyridoxal-5́-phosphate-dependent condensation of homocysteine with either serine or O-acetylserine to produce cystathionine. The enzyme can perform alternative reactions that use homocysteine and cysteine as substrates leading to the endogenous biosynthesis of hydrogen sulfide, another key element in maintaining the intracellular redox equilibrium. In contrast with human CBS, TgCBS lacks the N-terminal heme binding domain and is not responsive to S-adenosylmethionine. Herein, we describe the structure of a TgCBS construct that lacks amino acid residues 466-491 and shows the same activity of the native protein. TgCBS Δ466-491 was determined alone and in complex with reaction intermediates. A complementary molecular dynamics analysis revealed a unique domain organization, similar to the pathogenic mutant D444N of human CBS. Our data provides one missing piece in the structural diversity of CBSs by revealing the so far unknown three-dimensional arrangement of the CBS-type of Apicomplexa. This domain distribution is also detected in yeast and bacteria like Pseudomonas aeruginosa. These results pave the way for understanding the mechanisms by which TgCBS regulates the intracellular redox of the parasite, and have far-reaching consequences for the functional understanding of CBSs with similar domain distribution.

5.
Cells ; 9(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333862

RESUMO

The sialic acid-binding immunoglobulin-type of lectins (Siglecs) are receptors that recognize sialic acid-containing glycans. In the majority of the cases, Siglecs are expressed on immune cells and play a critical role in regulating immune cell signaling. Over the years, it has been shown that the sialic acid-Siglec axis participates in immunological homeostasis, and that any imbalance can trigger different pathologies, such as autoimmune diseases or cancer. For all this, different therapeutics have been developed that bind to Siglecs, either based on antibodies or being smaller molecules. In this review, we briefly introduce the Siglec family and we compile a description of glycan-based molecules and antibody-based therapies (including CAR-T and bispecific antibodies) that have been designed to therapeutically targeting Siglecs.


Assuntos
Terapia de Alvo Molecular , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Anticorpos/metabolismo , Humanos , Nanopartículas/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química
6.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842432

RESUMO

The four member family of "Cyclin and Cystathionine ß-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Humanos , Magnésio/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Relação Estrutura-Atividade
7.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845649

RESUMO

The cyclin and cystathionine ß-synthase (CBS) domain magnesium transport mediators, CNNMs, are key players in maintaining the homeostasis of magnesium in different organs. The human family includes four members, whose impaired activity causes diseases such as Jalili Syndrome or Familial Hypomagnesemia, but is also linked to neuropathologic disorders, altered blood pressure, and infertility. Recent findings demonstrated that CNNMs are associated with the highly oncogenic phosphatases of the regenerating liver to promote tumor growth and metastasis, which has attracted renewed focus on their potential exploitation as targets for cancer treatment. However, the exact function of CNNMs remains unclear and is subject to debate, proposed as either direct transporters, sensors, or homeostatic factors. This review gathers the current structural knowledge on the CNNM family, highlighting similarities and differences with the closely related structural partners such as the bacterial Mg2+/Co2+ efflux protein CorC and the Mg2+ channel MgtE.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Proteínas de Transporte de Cátions/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica
8.
J Struct Biol ; 202(1): 82-93, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29275181

RESUMO

Cystathionine ß-synthase (CBS), the key enzyme in the transsulfuration pathway, links methionine metabolism to the biosynthesis of cellular redox controlling molecules. CBS catalyzes the pyridoxal-5'-phosphate-dependent condensation of serine and homocysteine to form cystathionine, which is subsequently converted into cysteine. Besides maintaining cellular sulfur amino acid homeostasis, CBS also catalyzes multiple hydrogen sulfide-generating reactions using cysteine and homocysteine as substrates. In mammals, CBS is activated by S-adenosylmethionine (AdoMet), where it can adopt two different conformations (basal and activated), but exists as a unique highly active species in fruit fly Drosophila melanogaster. Here we present the crystal structure of CBS from honeybey Apis mellifera, which shows a constitutively active dimeric species and let explain why the enzyme is not allosterically regulated by AdoMet. In addition, comparison of available CBS structures unveils a substrate-induced closure of the catalytic cavity, which in humans is affected by the AdoMet-dependent regulation and likely impaired by the homocystinuria causing mutation T191M.


Assuntos
Cistationina beta-Sintase/química , Proteínas de Insetos/química , Conformação Proteica , Multimerização Proteica , Sequência de Aminoácidos , Animais , Abelhas , Cristalografia por Raios X , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cisteína/metabolismo , Homocisteína/metabolismo , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Moleculares , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
J Biol Chem ; 292(3): 786-801, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27899452

RESUMO

Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine ß-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas Imediatamente Precoces/química , Magnésio/química , Proteínas Oncogênicas/química , Proteínas Tirosina Fosfatases/química , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Magnésio/metabolismo , Camundongos , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(37): E3845-52, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197074

RESUMO

Cystathionine ß-synthase (CBS) is a heme-dependent and pyridoxal-5'-phosphate-dependent protein that controls the flux of sulfur from methionine to cysteine, a precursor of glutathione, taurine, and H2S. Deficiency of CBS activity causes homocystinuria, the most frequent disorder of sulfur amino acid metabolism. In contrast to CBSs from lower organisms, human CBS (hCBS) is allosterically activated by S-adenosylmethionine (AdoMet), which binds to the regulatory domain and triggers a conformational change that allows the protein to progress from the basal toward the activated state. The structural basis of the underlying molecular mechanism has remained elusive so far. Here, we present the structure of hCBS with bound AdoMet, revealing the activated conformation of the human enzyme. Binding of AdoMet triggers a conformational change in the Bateman module of the regulatory domain that favors its association with a Bateman module of the complementary subunit to form an antiparallel CBS module. Such an arrangement is very similar to that found in the constitutively activated insect CBS. In the presence of AdoMet, the autoinhibition exerted by the regulatory region is eliminated, allowing for improved access of substrates to the catalytic pocket. Based on the availability of both the basal and the activated structures, we discuss the mechanism of hCBS activation by AdoMet and the properties of the AdoMet binding site, as well as the responsiveness of the enzyme to its allosteric regulator. The structure described herein paves the way for the rational design of compounds modulating hCBS activity and thus transsulfuration, redox status, and H2S biogenesis.


Assuntos
Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , S-Adenosilmetionina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína
11.
Biochem J ; 464(1): 23-34, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25184538

RESUMO

Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved in Mg2+ handling by the bacterial Mg2+ transporter MgtE, and AMP binding by the Mg2+ efflux protein CorC. Additionally, we studied the structural impact of the pathogenic mutation T568I located in this region. Our crystal structures reveal that nucleotides such as AMP, ADP or ATP bind at only one of the two cavities present in CNNM2429-584. Mg2+ favours ATP binding by alleviating the otherwise negative charge repulsion existing between acidic residues and the polyphosphate group of ATP. In crystals CNNM2429-584 forms parallel dimers, commonly referred to as CBS (cystathionine ß-synthase) modules. Interestingly, nucleotide binding triggers a conformational change in the CBS module from a twisted towards a flat disc-like structure that mostly affects the structural elements connecting the Bateman module with the transmembrane region. We furthermore show that the T568I mutation, which causes dominant hypomagnesaemia, mimics the structural effect induced by nucleotide binding. The results of the present study suggest that the T568I mutation exerts its pathogenic effect in humans by constraining the conformational equilibrium of the CBS module of CNNM2, which becomes 'locked' in its flat form.


Assuntos
Ciclinas/química , Ciclinas/metabolismo , Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Proteínas de Transporte de Cátions , Cristalização , Ciclinas/genética , Cistationina beta-Sintase/genética , Humanos , Dados de Sequência Molecular , Mutação/genética , Nucleotídeos/química , Nucleotídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína
12.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 3): 320-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24598918

RESUMO

Cystathionine ß-synthase (CBS; EC 4.2.1.22) catalyzes the condensation of homocysteine and serine to form cystathionine, with the release of water. In humans, deficiency in CBS activity is the most common cause of hyperhomocysteinaemia and homocystinuria. More than 160 pathogenic mutations in the human CBS gene have been described to date. Here, the purification and preliminary crystallographic analysis of the catalytic core of CBS from Saccharomyces cerevisiae (ScCBS) is described which, in contrast to other eukaryotic CBSs, lacks the N-terminal haem-binding domain and is considered to be a useful model for investigation of the pyridoxal-5'-phosphate-mediated reactions of human CBS (hCBS). The purified protein yielded two different crystal forms belonging to space groups P41212 and P212121, with unit-cell parameters a = b = 72.390, c = 386.794 Šand a = 58.156, b = 89.988, c = 121.687 Å, respectively. Diffraction data were collected to 2.7 and 3.1 Šresolution, respectively, using synchrotron radiation. Preliminary analysis of the X-ray data suggests the presence of ScCBS homodimers in both types of crystals.


Assuntos
Cistationina beta-Sintase/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Cromatografia de Afinidade , Cristalização , Cristalografia por Raios X , Cistationina beta-Sintase/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
13.
Arch Biochem Biophys ; 540(1-2): 70-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161944

RESUMO

Cystathionine ß-synthase (CBS) domains or CBS motifs are conserved structural domains that are present in thousands of non functionally-related proteins from all kingdoms of life. Their importance is underlined by the range of hereditary diseases associated with mutations in their amino acid sequence. CBS motifs associate in pairs referred to as Bateman modules. In contrast with initial assumptions, it is now well documented that CBS motifs and/or Bateman modules may suffer conformational changes upon binding of adenosine derivatives, metal ions or nucleic acids. The degree and direction of these structural changes depend on the type of ligand, the intrinsic features of the binding sites and the association manner of the Bateman modules. This review aims to provide a summary of the current knowledge on the structural basis of ligand recognition and on the structural effects caused by these ligands in CBS domain containing proteins.


Assuntos
Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Ligantes , Dados de Sequência Molecular , Estrutura Terciária de Proteína
14.
Proc Natl Acad Sci U S A ; 110(40): E3790-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043838

RESUMO

Cystathionine ß-synthase (CBS) controls the flux of sulfur from methionine to cysteine, a precursor of glutathione, taurine, and H2S. CBS condenses serine and homocysteine to cystathionine with the help of three cofactors, heme, pyridoxal-5'-phosphate, and S-adenosyl-l-methionine. Inherited deficiency of CBS activity causes homocystinuria, the most frequent disorder of sulfur metabolism. We present the structure of the human enzyme, discuss the unique arrangement of the CBS domains in the C-terminal region, and propose how they interact with the catalytic core of the complementary subunit to regulate access to the catalytic site. This arrangement clearly contrasts with other proteins containing the CBS domain including the recent Drosophila melanogaster CBS structure. The absence of large conformational changes and the crystal structure of the partially activated pathogenic D444N mutant suggest that the rotation of CBS motifs and relaxation of loops delineating the entrance to the catalytic site represent the most likely molecular mechanism of CBS activation by S-adenosyl-l-methionine. Moreover, our data suggest how tetramers, the native quaternary structure of the mammalian CBS enzymes, are formed. Because of its central role in transsulfuration, redox status, and H2S biogenesis, CBS represents a very attractive therapeutic target. The availability of the structure will help us understand the pathogenicity of the numerous missense mutations causing inherited homocystinuria and will allow the rational design of compounds modulating CBS activity.


Assuntos
Cistationina beta-Sintase/química , Modelos Moleculares , Polimerização , Conformação Proteica , Enxofre/química , Western Blotting , Cristalização , Eletroforese em Gel de Gradiente Desnaturante , Humanos
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1318-22, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23143240

RESUMO

Human cystathionine ß-synthase (CBS) is a pyridoxal-5'-phosphate-dependent hemeprotein, whose catalytic activity is regulated by S-adenosylmethionine. CBS catalyzes the ß-replacement reaction of homocysteine (Hcy) with serine to yield cystathionine. CBS is a key regulator of plasma levels of the thrombogenic Hcy and deficiency in CBS is the single most common cause of homocystinuria, an inherited metabolic disorder of sulfur amino acids. The properties of CBS enzymes, such as domain organization, oligomerization degree or regulatory mechanisms, are not conserved across the eukaryotes. The current body of knowledge is insufficient to understand these differences and their impact on CBS function and physiology. To overcome this deficiency, we have addressed the crystallization and preliminary crystallographic analysis of a protein construct (hCBS516-525) that contains the full-length CBS from Homo sapiens (hCBS) and just lacks amino-acid residues 516-525, which are located in a disordered loop. The human enzyme yielded crystals belonging to space group I222, with unit-cell parameters a=124.98, b=136.33, c=169.83 Šand diffracting X-rays to a resolution of 3.0 Å. The crystal structure appears to contain two molecules in the asymmetric unit which presumably correspond to a dimeric form of the enzyme.


Assuntos
Cistationina beta-Sintase/química , Sequência de Aminoácidos , Sequência Conservada , Cristalização , Cristalografia por Raios X , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/isolamento & purificação , Humanos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1323-8, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23143241

RESUMO

Cystathionine ß-synthase (CBS) is a pyridoxal-5'-phosphate-dependent enzyme that catalyzes the first step of the transsulfuration pathway, namely the condensation of serine with homocysteine to form cystathionine. Mutations in the CBS gene are the single most common cause of hereditary homocystinuria, a multisystemic disease affecting to various extents the vasculature, connective tissues and central nervous system. At present, the crystal structure of CBS from Drosophila melanogaster is the only available structure of the full-length enzyme. Here we describe a cloning, overexpression, purification and preliminary crystallographic analysis of a full-length CBS from Apis mellifera (AmCBS) which maintains 51 and 46% sequence identity with its Drosophila and human homologs, respectively. The AmCBS yielded crystals belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=85.90, b=95.87, c=180.33 Å. Diffraction data were collected to a resolution of 3.0 Å. The crystal structure contained two molecules in the asymmetric unit which presumably correspond to the dimeric species observed in solution.


Assuntos
Abelhas/enzimologia , Cistationina beta-Sintase/química , Proteínas de Insetos/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Cristalização , Cristalografia por Raios X , Cistationina beta-Sintase/isolamento & purificação , Proteínas de Insetos/isolamento & purificação , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 10): 1198-203, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027747

RESUMO

This work describes the purification and preliminary crystallographic analysis of the CBS-domain pair of the murine CNNM2 magnesium transporter (formerly known as ancient domain protein 2; ACDP2), which consists of a pair of cystathionine ß-synthase (CBS) motifs and has 100% sequence identity to its human homologue. CNNM proteins represent the least-studied members of the eight different types of magnesium transporters identified to date in mammals. In humans, the CNNM family is encoded by four genes: CNNM1-4. CNNM1 acts as a cytosolic copper chaperone, whereas CNNM2 and CNNM4 have been associated with magnesium handling. Interestingly, mutations in the CNNM2 gene cause familial dominant hypomagnesaemia (MIM:607803), a rare human disorder characterized by renal and intestinal magnesium (Mg(2+)) wasting, which may lead to symptoms of Mg(2+) depletion such as tetany, seizures and cardiac arrhythmias. This manuscript describes the preliminary crystallographic analysis of two different crystal habits of a truncated form of the protein containing its regulatory CBS-domain pair, which has been reported to host the pathological mutation T568I in humans. The crystals belonged to space groups P2(1)2(1)2 and I222 (or I2(1)2(1)2(1)) and diffracted X-rays to 2.0 and 3.6 Šresolution, respectively, using synchrotron radiation.


Assuntos
Ciclinas/química , Animais , Proteínas de Transporte de Cátions , Cristalização , Cristalografia por Raios X , Ciclinas/isolamento & purificação , Humanos , Camundongos
18.
Protein Eng Des Sel ; 24(1-2): 161-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20959390

RESUMO

Nucleotide-binding cystathionine ß-synthase (CBS) domains function as regulatory motifs in several proteins distributed through all kingdoms of life. This function has been proposed based on their affinity for adenosyl-derivatives, although the exact binding mechanisms remain largely unknown. The question of how CBS domains exactly work is relevant because in humans, several genetic diseases have been associated with mutations in those motifs. In this work, we describe the adenosyl-ligand (AMP, ATP, NADP and SAM) properties of the wild-type CBS domain protein MJ0729 from Methanocaldococcus jannaschii by using a combination of spectroscopic techniques (fluorescence, FTIR and FRET). The fluorescence results show that binding to AMP and ATP occurs with an apparent dissociation constant of ~10 µM, and interestingly enough, binding induces protein conformational changes, as shown by FTIR. On the other hand, fluorescence spectra (FRET and steady-state) did not change upon addition of NADP and SAM to MJ0729, suggesting that tryptophan and/or tyrosine residues were not involved in the recognition of those ligands; however, there were changes in the secondary structure of the protein upon addition of NADP and SAM, as shown by FTIR (thus, indicating binding to the nucleotide). Taken together, these results suggest that: (i) the adenosyl ligands bind to MJ0729 in different ways, and (ii) there are changes in the protein secondary structure upon binding of the nucleotides.


Assuntos
Adenosina/análogos & derivados , Cistationina beta-Sintase/metabolismo , Methanococcaceae/enzimologia , Nucleotídeos/metabolismo , Cistationina beta-Sintase/química , Transferência Ressonante de Energia de Fluorescência , Methanococcaceae/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
19.
FEBS Lett ; 584(21): 4485-9, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20934423

RESUMO

The cystathionine beta-synthase (CBS) domains function as regulatory motifs in several proteins. Elucidating how CBS domains exactly work is relevant because several genetic human diseases have been associated with mutations in those motifs. Here, we show, for the first time, that a CBS domain binds calf-thymus DNA and E-boxes recognized by transcription factors. We have carried out the DNA-binding characterization of the CBS domain protein MJ0729 from Methanocaldococcus jannaschii by biochemical and spectroscopic techniques. Binding induces conformational changes in the protein, and involves the sole tryptophan residue. The apparent dissociation constant for the E-boxes is ∼10 µM. These results suggest that CBS domains might interact with DNA.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , DNA/metabolismo , Methanococcales , Animais , Sequência de Bases , Bovinos , Dicroísmo Circular , DNA/genética , Elementos E-Box/genética , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
20.
J Mol Biol ; 399(1): 53-70, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20382158

RESUMO

In mammals, 5'-AMP-activated protein kinase (AMPK) is a heterotrimeric protein composed of a catalytic serine/threonine kinase subunit (alpha) and two regulatory subunits (beta and gamma). The gamma-subunit senses the intracellular energy status by competitively binding AMP and ATP and is thought to be responsible for allosteric regulation of the whole complex. We describe herein the crystal structure of protein MJ1225 from Methanocaldococcus jannaschii complexed to AMP, ADP, and ATP. Our data provide evidence of a strong conservation of the key functional features seen in the gamma-subunit of the eukaryotic AMPK, and more importantly, it reveals a novel AMP binding site, herein denoted as site E, which had not been previously described in cystathionine beta-synthase domains so far. Site E is located in a small cavity existing between the alpha-helices structurally equivalent to those disrupting the internal symmetry of each Bateman domain in gamma-AMPKs and shows striking similarities with a symmetry-related crevice of the mammalian enzyme that hosts the pathological mutation N488I.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Arqueais/química , Methanococcaceae/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Eucariotos , Methanococcaceae/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA