Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunopharmacol Immunotoxicol ; 46(1): 49-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37624680

RESUMO

OBJECTIVES: Periodontitis is a chronic inflammatory disease induced by periodontal disease-causing bacteria. It has been shown that excessive immune response against bacteria is involved in periodontal tissue destruction including alveolar bone resorption. Erucin is a biologically active substance found in cruciferous plants such as arugula and is classified as an isothiocyanate. No previous studies have attempted to use erucin in the treatment of periodontitis, and there are no papers that have examined the effects of erucin on periodontal resident cells. The purpose of this study was to analyze the effects of erucin on the production of inflammatory and antioxidant mediators produced by tumor necrosis factor (TNF)-α-stimulated TR146 cells, an oral epithelial cell line, including its effects on signaling molecules. METHODS: Cytokine and chemokine levels were measured by ELISA. Protein expression in TR146 cells and activations of signal transduction pathway were determined by Western blotting. RESULTS: Our results indicate that erucin suppresses interleukin-6 and CXC-chemokine ligand 10 production and vascular cell adhesion molecule-1 expression in TNF-α-stimulated TR146 cells. In addition, erucin induced the production of the antioxidant enzymes, Heme Oxygenase-1 and NAD(P)H quinone dehydrogenase 1 in TR146 cells. Furthermore, erucin suppressed TNF-α-stimulated nuclear factor-κB, signal transducer and activator of transcription3, and phospho-70S6 Kinase-S6 ribosomal protein signaling pathways in TR146 cells. We have shown that erucin has anti-inflammatory effects on oral epithelial cells and also induces the production of antioxidant mediators. CONCLUSIONS: These results suggest that erucin may provide a new anti-inflammatory agent that can be used in the treatment of periodontitis.


Assuntos
Periodontite , Sulfetos , Tiocianatos , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mediadores da Inflamação/metabolismo , Células Epiteliais , NF-kappa B/metabolismo , Quimiocinas/metabolismo , Periodontite/tratamento farmacológico , Periodontite/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2233-2240, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804343

RESUMO

Berteroin is a bioactive substance classified as an isothiocyanate found in cruciferous vegetables such as cabbage, arugula, and salad leaves. In this study, we aimed to determine whether berteroin exerts anti-inflammatory effects on human periodontal ligament cells (HPDLCs), a resident cells of periodontal tissue. Berteroin suppressed interleukin (IL)-1ß or tumor necrosis factor (TNF)-α-induced chemokines (C-C motif chemokine ligand (CCL)2, CCL20, C-X-C motif chemokine ligand (CXCL)10, IL-8, and IL-6) production and intercellular adhesion molecule (ICAM)-1 expression in HPDLCs. In addition, berteroin inhibited phosphorylation of IκB kinase (IKK)- α/ ß, nuclear factor (NF)- κB p65, and IκB- α and degradation of IκB- α in the NF-κB pathway induced by IL-1 ß or TNF- α stimulation. Moreover, berteroin could inhibit signal transducer and activator of transcription (STAT)3 phosphorylation in TNF- α -stimulated HPDLC. Furthermore, berteroin increased the expression of the antioxidant enzymes, heme oxygenase (HO)-1 and NAD(P)H quinone dehydrogenase (NQO)1, in IL-1 ß or TNF- α -stimulated HPDLCs. These results suggest that berteroin may decrease the production of inflammatory mediators in HPDLCs by suppressing the NF-κB pathway, and may also decrease the local reactive oxygen species (ROS) production in periodontal lesions by increasing the production of antioxidant enzymes.


Assuntos
NF-kappa B , Transdução de Sinais , Humanos , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Interleucina-1beta/metabolismo , Mediadores da Inflamação/metabolismo , Ligamento Periodontal/metabolismo , Ligantes , Isotiocianatos/farmacologia , Quimiocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Geobiology ; 21(6): 689-707, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37622474

RESUMO

Iron (Fe) is an essential element for life, and its geochemical cycle is intimately linked to the coupled history of life and Earth's environment. The accumulated geologic records indicate that ferruginous waters existed in the Precambrian oceans not only before the first major rise of atmospheric O2 levels (Great Oxidation Event; GOE) during the Paleoproterozoic, but also during the rest of the Proterozoic. However, the interactive evolution of the biogeochemical cycles of O2 and Fe during the Archean-Proterozoic remains ambiguous. Here, we develop a biogeochemical model to investigate the coupled biogeochemical evolution of Fe-O2 -P-C cycles across the GOE. Our model demonstrates that the marine Fe cycle was less sensitive to changes in the production rate of O2 before the GOE (atmospheric pO2 < 10-6 PAL; present atmospheric level). When the P supply rate to the ocean exceeds a certain threshold, the GOE occurs and atmospheric pO2 rises to ~10-3 -10-1 PAL. After the GOE, the marine Fe(II) concentration is highly sensitive to atmospheric pO2 , suggesting that the marine redox landscape during the Proterozoic may have fluctuated between ferruginous conditions and anoxic non-ferruginous conditions with sulfidic water masses around continental margins. At a certain threshold value of atmospheric pO2 of ~0.3% PAL, the primary oxidation pathway of Fe(II) shifts from the activity of Fe(II)-utilizing anoxygenic photoautotrophs in sunlit surface waters to abiotic process in the deep ocean. This is accompanied by a shift in the primary deposition site of Fe(III) hydroxides from the surface ocean to the deep sea, providing a plausible mechanistic explanation for the observed cessation of iron formations during the Proterozoic.

4.
Ecotoxicol Environ Saf ; 260: 115089, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271104

RESUMO

Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.


Assuntos
Ameloblastos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ameloblastos/metabolismo , Morte Celular , Necrose
5.
Oral Dis ; 29(8): 3688-3697, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36266256

RESUMO

OBJECTIVE: Porphyromonas gingivalis (Pg) is thought to be involved in the progression of Alzheimer's disease (AD). Whether Pg or its contents can reach the brain and directly affect neuropathology is, however, unknown. Here, we investigated whether outer membrane vesicles (OMVs) of Pg translocate to the brain and induce the pathogenic features of AD. MATERIAL AND METHODS: Pg OMVs were injected into the abdominal cavity of mice for 12 weeks. Pg OMV translocation to the brain was detected by immunohistochemistry using an anti-gingipain antibody. Tau protein and microglial activation in the mouse brain were examined by western blotting and immunohistochemistry. The effect of gingipains on inflammation was assessed by real-time polymerase chain reaction using human microglial HMC3 cells. RESULTS: Gingipains were detected in the region around cerebral ventricles, choroid plexus, and ventricular ependymal cells in Pg OMV-administered mice. Tau and phosphorylated Tau protein increased and microglia were activated. Pg OMVs also increased the gene expression of proinflammatory cytokines in HMC3 cells in a gingipain-dependent manner. CONCLUSION: Pg OMVs, including gingipains, can reach the cerebral ventricle and induce neuroinflammation by activating microglia. Pg OMVs may provide a better understanding of the implications of periodontal diseases in neurodegenerative conditions such as AD.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Animais , Camundongos , Cisteína Endopeptidases Gingipaínas , Proteínas tau , Porphyromonas gingivalis , Ventrículos Cerebrais
6.
Biomedicines ; 10(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551911

RESUMO

Iberin is a bioactive chemical found in cruciferous plants that has been demonstrated to have anticancer properties. However, there have been no reports on its effects on periodontal resident cells, and many questions remain unanswered. The aim of this study was to examine whether iberin had anti-inflammatory effects on human oral epithelial cells, including influences on signal transduction pathway activation in TNF-α-στιµυλατεd χελλσ. Iberin inhibited the production of interleukin (IL)-6 and C-X-C motif chemokine ligand 10 (CXCL10), as well as the expression of vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 in tumor necrosis factor (TNF)-α-stimulated TR146 cells, a human oral epithelial cell line. Moreover, iberin administration increased the expression of antioxidant signaling pathways, such as Heme Oxygenase (HO)-1 and NAD(P)H quinone dehydrogenase 1 (NQO1). Furthermore, we found that iberin could inhibit the activation of the nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT)3, and p70S6 kinase (p70S6K)-S6 ribosomal protein (S6) pathways in TNF-α-stimulated TR146 cells. In conclusion, iberin reduced inflammatory mediator expression in human oral epithelial cells by preventing the activation of particular signal transduction pathways.

7.
Curr Issues Mol Biol ; 44(7): 2915-2922, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35877425

RESUMO

6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC) is a bioactive substance found in wasabi (Wasabia japonica) and has been reported to have some bioactive effects including anticancer and antioxidant effects. However, there are no reports on its effects on periodontal resident cells, and many points remain unclear. In this study, we aimed to investigate whether 6-MSITC exerts anti-inflammatory effects on human oral epithelial cells, including effects on signal transduction pathway activation. 6-MSITC inhibited interleukin (IL)-6 and C-X-C motif chemokine ligand 10 (CXCL10) production in TNF-α-stimulated TR146 cells, which are a human oral epithelial cell line. Moreover, we found that 6-MSITC could suppress signal transducer and activator of transcription (STAT)3, nuclear factor (NF)-κB, and p70S6 kinase (p70S6K)-S6 ribosomal protein (S6) pathways activation in TNF-α-stimulated TR146 cells. Furthermore, STAT3 and NF-κB inhibitors could suppress IL-6 and CXCL10 production in TNF-α-treated TR146 cells. In summary, 6-MSITC could decrease IL-6 and CXCL10 production in human oral epithelial cell by inhibiting STAT3 and NF-κB activation.

8.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166236, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389473

RESUMO

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term "periodontal medicine" is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.


Assuntos
Vesículas Extracelulares/imunologia , Lesão Pulmonar/imunologia , Macrófagos/imunologia , Periodontite/complicações , Porphyromonas gingivalis/imunologia , Células A549 , Animais , Infecções por Bacteroidaceae , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Lesão Pulmonar/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Periodontite/imunologia , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Células THP-1
9.
Mediators Inflamm ; 2021: 5535844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335088

RESUMO

Nobiletin, a biologically active substance in the skin of citrus fruits, has been reported to be an effective anti-inflammatory, anticancer, and antimicrobial agent. In this study, we aimed to examine the anti-inflammatory effects of nobiletin on tumor necrosis factor- (TNF-) stimulated human periodontal ligament cells (HPDLCs). Our results demonstrated that nobiletin treatment could decrease the expressions of inflammatory cytokines (C-X-C motif chemokine ligand (CXCL)10, C-C motif chemokine ligand (CCL)2, and interleukin- (IL-) 8), matrix metalloproteinases (MMPs) (MMP1 and MMP3), and prostaglandin-endoperoxide synthase 2 (PTGS2) in TNF-stimulated HPDLCs. Moreover, we revealed that nobiletin could inhibit the activation of nuclear factor- (NF-) κB and protein kinase B (AKT1) pathways in TNF-stimulated HPDLCs. Furthermore, nobiletin treatment enhanced nuclear factor, erythroid 2 like 2 (NFE2L2) and heme oxygenase 1 (HMOX1) expressions in TNF-stimulated HPDLCs. In conclusion, these findings suggest that nobiletin can inhibit inflammatory responses in TNF-stimulated HPDLCs by inhibiting NF-κB and AKT1 activations and upregulating the NFE2L2 and HMOX1 expression.


Assuntos
Flavonas , Ligamento Periodontal , Flavonas/metabolismo , Flavonas/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Ligamento Periodontal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Sci Rep ; 11(1): 14943, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294795

RESUMO

The ability of cancer cells to undergo partial-epithelial mesenchymal transition (p-EMT), rather than complete EMT, poses a higher metastatic risk. Although Fusobacterium nucleatum mainly inhabits in oral cavity, attention has been focused on the F. nucleatum involvement in colorectal cancer development. Here we examined the p-EMT regulation by F. nucleatum in oral squamous cell carcinoma (OSCC) cells. We cultured OSCC cells with epithelial, p-EMT or EMT phenotype with live or heat-inactivated F. nucleatum. Expression of the genes involved in epithelial differentiation, p-EMT and EMT were examined in OSCC cells after co-culture with F. nucleatum by qPCR. Cell growth and invasion of OSCC cells were also examined. Both live and heat-inactivated F. nucleatum upregulated the expression of p-EMT-related genes in OSCC cells with epithelial phenotype, but not with p-EMT or EMT phenotype. Moreover, F. nucleatum promoted invasion of OSCC cells with epithelial phenotype. Co-culture with other strains of bacteria other than Porphyromonas gingivalis did not alter p-EMT-related genes in OSCC cells with epithelial phenotype. F. nucleatum infection may convert epithelial to p-EMT phenotype via altering gene expression in OSCC. Oral hygiene managements against F. nucleatum infection may contribute to reduce the risk for an increase in metastatic ability of OSCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/virologia , Infecções por Fusobacterium/complicações , Fusobacterium nucleatum/patogenicidade , Neoplasias Bucais/virologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Infecções por Fusobacterium/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/genética , Metástase Neoplásica , Higiene Bucal
11.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867334

RESUMO

Chronic inflammation caused by infections has been suggested to be one of the most important cause of cancers. It has recently been shown that there is correlation between intestinal bacteria and cancer development including metastasis. As over 700 bacterial species exist in an oral cavity, it has been concerning that bacterial infection may cause oral cancer. However, the role of bacteria regarding tumorigenesis of oral cancer remains unclear. Several papers have shown that Fusobacterium species deriving the oral cavities, especially, play a crucial role for the development of colorectal and esophageal cancer. F. nucleatum is a well-known oral bacterium involved in formation of typical dental plaque on human teeth and causing periodontal diseases. The greatest characteristic of F. nucleatum is its ability to adhere to various bacteria and host cells. Interestingly, F. nucleatum is frequently detected in oral cancer tissues. Moreover, detection of F. nucleatum is correlated with the clinical stage of oral cancer. Although the detailed mechanism is still unclear, Fusobacterium species have been suggested to be associated with cell adhesion, tumorigenesis, epithelial-to-mesenchymal transition, inflammasomes, cell cycle, etc. in oral cancer. In this review, we introduce the reports focused on the association of Fusobacterium species with cancer development and progression including oral, esophageal, and colon cancers.


Assuntos
Neoplasias do Colo/microbiologia , Neoplasias Esofágicas/microbiologia , Infecções por Fusobacterium/complicações , Fusobacterium/patogenicidade , Neoplasias Bucais/microbiologia , Adesão Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Fusobacterium/classificação , Humanos , Inflamassomos/metabolismo , Boca/microbiologia
12.
Immunopharmacol Immunotoxicol ; 42(4): 373-378, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32538208

RESUMO

OBJECTIVES: Carnosic acid (CA), which is one of bioactive compounds from rosemary, has various biological activities. However, the effect of CA on periodontal ligament cells is still uncertain. The aim of this study was to examine the effects of CA on inflammatory cytokines production in human periodontal ligament cells. METHODS: Cytokine and chemokine levels were measured by ELISA. Activations of signal transduction pathway were determined by Western blotting. RESULTS: Treatment of CA decreased inflammatory cytokines such as interleukin (IL)-6, CXC chemokine ligand (CXCL)10, CC chemokine ligand (CCL)2, and CCL20 productions in IL-1ß or tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells in a dose-dependent manner. Moreover, we found that CA could suppress Jun-N-terminal kinase (JNK) pathway, nuclear factor (NF)-κB pathway and signal transducer and activator of transcription (STAT)3 pathway activation in IL-1ß or TNF-α-stimulated human periodontal ligament cells. CONCLUSION: The results of this study suggest that CA has anti-inflammatory effects in human periodontal ligament cells by inhibiting JNK, NF-κB and STAT3 pathways.


Assuntos
Abietanos/farmacologia , Antioxidantes/farmacologia , Citocinas/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/farmacologia , Ligamento Periodontal/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
13.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165731, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088316

RESUMO

Outer membrane vesicles (OMVs) are nanosized particles derived from the outer membrane of gram-negative bacteria. Oral bacterium Porphyromonas gingivalis (Pg) is known to be a major pathogen of periodontitis that contributes to the progression of periodontal disease by releasing OMVs. The effect of Pg OMVs on systemic diseases is still unknown. To verify whether Pg OMVs affect the progress of diabetes mellitus, we analyzed the cargo proteins of vesicles and evaluated their effect on hepatic glucose metabolism. Here, we show that Pg OMVs were equipped with Pg-derived proteases gingipains and translocated to the liver in mice. In these mice, the hepatic glycogen synthesis in response to insulin was decreased, and thus high blood glucose levels were maintained. Pg OMVs also attenuated the insulin-induced Akt/glycogen synthase kinase-3 ß (GSK-3ß) signaling in a gingipain-dependent fashion in hepatic HepG2 cells. These results suggest that the delivery of gingipains mediated by Pg OMV elicits changes in glucose metabolisms in the liver and contributes to the progression of diabetes mellitus.


Assuntos
Membrana Externa Bacteriana/metabolismo , Cisteína Endopeptidases Gingipaínas/genética , Periodontite/genética , Porphyromonas gingivalis/genética , Animais , Membrana Externa Bacteriana/patologia , Modelos Animais de Doenças , Cisteína Endopeptidases Gingipaínas/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética
14.
Inflammation ; 42(4): 1456-1462, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30997585

RESUMO

Sudachitin, a polymethoxylated flavonoid found in the skin of Citrus sudachi, is a biologically active substance. The aim of this study was to examine whether sudachitin could be used to inhibit the expression of matrix metalloproteinase (MMP)-1 and MMP-3, which are involved in the destruction of periodontal tissues in periodontal lesions, in tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells (HPDLC). Sudachitin suppressed TNF-α-induced MMP-1 and MMP-3 production in HPDLC. On the other hand, it enhanced tissue inhibitor of metalloproteinase (TIMP)-1 expression. The level of Akt phosphorylation in the TNF-α-stimulated HPDLC was decreased by sudachitin treatment. Moreover, an Akt inhibitor reduced MMP-1 and MMP-3 production and increased TIMP-1 production. These findings indicate that sudachitin reduces MMP-1 and MMP-3 production in TNF-α-stimulated HPDLC by inhibiting the Akt pathway.


Assuntos
Flavonoides/farmacologia , Glicosídeos/farmacologia , Metaloproteinase 1 da Matriz/efeitos dos fármacos , Metaloproteinase 3 da Matriz/efeitos dos fármacos , Ligamento Periodontal/citologia , Fator de Necrose Tumoral alfa/farmacologia , Anti-Infecciosos/farmacologia , Células Cultivadas , Humanos , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 3 da Matriz/biossíntese , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidor Tecidual de Metaloproteinase-1/efeitos dos fármacos
15.
Inflammation ; 42(4): 1311-1316, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30820808

RESUMO

Carnosic acid, which is a bioactive compound isolated from rosemary, has various pharmacological effects. However, the anti-inflammatory effect of carnosic acid on periodontitis is still unknown. The aim of this study was to investigate the effect of carnosic acid on CXC chemokine receptor 3 (CXCR3) ligands, which are involved in Th1 cells migration and accumulation, production in interleukin (IL)-27-stimulated human oral epithelial cells (TR146 cells). Carnosic acid decreased CXC chemokine ligand (CXCL)9, CXCL10, and CXCL11 production in IL-27-stimulated TR146 cells in a dose-dependent fashion. Moreover, we disclosed that carnosic acid could suppress signal transducer and activator of transcription (STAT)1, STAT3, and protein kinase B (Akt) phosphorylation in IL-27-stimulated TR146 cells. Furthermore, STAT1, STAT3, and Akt inhibitors could suppress CXCR3 ligands production in IL-27-treated TR146 cells. In summary, carnosic acid could reduce CXCR3 ligands production in human oral epithelial cell by inhibiting STAT1, STAT3, and Akt activation.


Assuntos
Abietanos/farmacologia , Células Epiteliais/metabolismo , Interleucina-27/farmacologia , Receptores CXCR3/biossíntese , Células Cultivadas , Quimiocina CXCL10/antagonistas & inibidores , Quimiocina CXCL11/antagonistas & inibidores , Quimiocina CXCL9/antagonistas & inibidores , Humanos , Ligantes , Periodontite/tratamento farmacológico , Periodontite/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores
16.
Inflammation ; 41(6): 2110-2115, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30039429

RESUMO

Honokiol and magnolol, which are lignans isolated from Magnolia quinquepeta, have some pharmacological effects. However, the anti-inflammatory effects of honokiol and magnolol on periodontal disease are still uncertain. The aim of this study was to examine the effect of honokiol and magnolol on CXC chemokine receptor 3 (CXCR3) ligands, which are related with Th1 cell migration, production in interleukin (IL)-27-stimulated human oral epithelial cells (TR146 cells). Honokiol and magnolol inhibited CXC chemokine ligand (CXCL)10 and CXCL11 production in IL-27-stimulated TR146 cells in a dose-dependent manner. Moreover, we revealed that honokiol and magnolol could suppress signal transducer and activator of transcription (STAT)3 and protein kinase B (Akt) phosphorylation in IL-27-stimulated TR146 cells though STAT1 phosphorylation was not suppressed by honokiol and magnolol treatment. Furthermore, STAT3 and Akt inhibitors could suppress CXCR3 ligand production in TR146 cells. In summary, honokiol and magnolol could reduce CXCR3 ligand production in oral epithelial cell by inhibiting STAT3 and Akt activation.


Assuntos
Compostos de Bifenilo/farmacologia , Quimiocina CXCL10/antagonistas & inibidores , Quimiocina CXCL11/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Interleucina-27/farmacologia , Lignanas/farmacologia , Boca/citologia , Anti-Inflamatórios/farmacologia , Humanos , Ligantes , Doenças Periodontais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptores CXCR3 , Fator de Transcrição STAT3/antagonistas & inibidores
17.
Cell Physiol Biochem ; 43(3): 1198-1206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28977795

RESUMO

BACKGROUND/AIMS: Interleukin-27 (IL-27) is a cytokine which belongs to the IL-12 family. However, the role of IL-27 in the pathogenesis of periodontal disease is uncertain. The aim of this study was to examine the effect of IL-27 on chemokine production in TNF-α-stimulated human oral epithelial cells (TR146). METHODS: We measured chemokine production in TR146 by ELISA. We used western blot analysis to detect the phosphorylation levels of signal transduction molecules, including STAT1 and STAT3 in TR146. We used inhibitors to examine the role of STAT1 and STAT3 activation. RESULTS: IL-27 increased CXCR3 ligands production in TNF-α-stimulated TR146. Meanwhile, IL-27 suppressed IL-8 and CCL20 production induced by TNF-α. STAT1 phosphorylation level in IL-27 and TNF-α-stimulated TR146 was enhanced in comparison to TNF-α-stimulated TR146. STAT3 phosphorylation level in IL-27-treated TR146 did not change by TNF-α. Both STAT1 inhibitor and STAT3 inhibitor decreased CXCR3 ligands production. STAT1 inhibitor overrode the inhibitory effect of IL-27 on IL-8 and CCL20 production in TNF-α-stimulated TR146. Meanwhile, STAT3 inhibitor did not modulate IL-8 and CCL20 production. CONCLUSION: IL-27 might control leukocyte migration in periodontal lesion by modulating chemokine production from epithelial cells.


Assuntos
Quimiocinas/metabolismo , Interleucina-27/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular , Quimiocina CCL20/metabolismo , Humanos , Interleucina-8/metabolismo , Mucosa Bucal/citologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Tirfostinas/farmacologia , Vidarabina/análogos & derivados , Vidarabina/farmacologia
18.
Immunol Invest ; 46(6): 615-624, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28753407

RESUMO

Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.


Assuntos
Quimiocina CXCL10/metabolismo , Células Epiteliais/metabolismo , Interleucinas/metabolismo , Linhagem Celular Tumoral , Humanos , Interferons , Mucosa Bucal/citologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Exp Cell Res ; 354(1): 57-64, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341446

RESUMO

The double-stranded RNA-dependent kinase (PKR), which is activated by double stranded RNA, induces inflammation by regulating NF-κB signaling. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome also modulates inflammation in response to infection. Porphyromonas gingivalis (P.gingivalis) is an oral bacterium which is implicated in the pathogenesis of periodontal diseases. We previously reported that PKR is a key modulator of bone metabolism and inflammation in the periodontal tissue. PKR was also reported to induce inflammation in response to microbes by regulating the NLRP3 inflammasome, suggesting that PKR could affect inflammation along with NLRP3 in periodontal diseases. In this study, we investigated the effects of PKR on NLRP3 expression and NF-κB activity in P. gingivalis infected osteoblasts. We first constructed a SNAP26b-tagged P.gingivalis (SNAP-P. g.) and traced its internalization into the cell. SNAP-P. g. increased the activity of PKR and NF-κB and also induced NLRP3 expression in osteoblasts. Inhibition of NF-κB attenuated SNAP-P. g.-induced NLRP3 expression. The knockdown of PKR using shRNA decreased both the activity of NF-κB and the expression of NLRP3 induced by SNAP-P.g.. We therefore concluded that in osteoblasts, P. gingivalis activated PKR, which in turn increased NLRP3 expression by activating NF-κB. Our results suggest that PKR modulates inflammation by regulating the expression of the NLRP3 inflammasome through the NF-κB pathway in periodontal diseases.


Assuntos
Inflamassomos/genética , Inflamação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Acoplados a Proteínas G/genética , Fator de Transcrição RelA/biossíntese , Células 3T3 , Animais , Regulação da Expressão Gênica/genética , Humanos , Inflamação/microbiologia , Inflamação/patologia , Camundongos , NF-kappa B/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Osteoblastos/metabolismo , Osteoblastos/microbiologia , Osteoblastos/patologia , Bolsa Periodontal/genética , Bolsa Periodontal/microbiologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidade , Receptores Acoplados a Proteínas G/biossíntese , Transdução de Sinais/genética , Fator de Transcrição RelA/genética
20.
Inflammation ; 40(2): 360-365, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27896541

RESUMO

Gomisin N, which is a lignan isolated from Schisandra chinensis, has some pharmacological effects. However, the anti-inflammatory effects of gomisin N on periodontal disease are uncertain. The aim of this study was to examine the effect of gomisin N on inflammatory mediator production in tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells (HPDLC). Gomisin N inhibited interleukin (IL)-6, IL-8, CC chemokine ligand (CCL) 2, and CCL20 production in TNF-α-stimulated HPDLC in a dose-dependent manner. Moreover, we revealed that gomisin N could suppress extracellular signal-regulated kinase (ERK) and c-Jun N terminal kinase (JNK) phosphorylation in TNF-α-stimulated HPDLC though protein kinase B (Akt) phosphorylation was not suppressed by gomisin N treatment. In summary, gomisin N might exert anti-inflammatory effects by attenuating cytokine production in periodontal ligament cells via inhibiting the TNF-α-stimulated ERK and JNK pathways activation.


Assuntos
Citocinas/biossíntese , Lignanas/farmacologia , Ligamento Periodontal/metabolismo , Compostos Policíclicos/farmacologia , Anti-Inflamatórios/farmacologia , Células Cultivadas , Ciclo-Octanos/farmacologia , Citocinas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA