Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 114(7): 670-680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38643763

RESUMO

INTRODUCTION: Lactotroph pituitary neuroendocrine tumors (PitNETs) are common pituitary tumors, but their underlying molecular mechanisms remain unclear. This study aimed to investigate the transcriptomic landscape of lactotroph PitNETs and identify potential molecular mechanisms and therapeutic targets through RNA sequencing and ingenuity pathway analysis (IPA). METHODS: Lactotroph PitNET tissues from five surgical cases without dopamine agonist treatment underwent RNA sequencing. Normal pituitary tissues from 3 patients served as controls. Differentially expressed genes (DEGs) were identified, and the functional pathways and gene networks were explored by IPA. RESULTS: Transcriptome analysis revealed that lactotroph PitNETs had gene expression patterns that were distinct from normal pituitary tissues. We identified 1,172 upregulated DEGs, including nine long intergenic noncoding RNAs (lincRNAs) belonging to the top 30 DEGs. IPA of the upregulated DEGs showed that the estrogen receptor signaling, oxidative phosphorylation signaling, and EIF signaling were activated. In gene network analysis, key upstream regulators, such as EGR1, PRKACA, PITX2, CREB1, and JUND, may play critical roles in lactotroph PitNETs. CONCLUSION: This study provides a comprehensive transcriptomic profile of lactotroph PitNETs and highlights the potential involvement of lincRNAs and specific signaling pathways in tumor pathogenesis. The identified upstream regulators may be potential therapeutic targets for future investigations.


Assuntos
Perfilação da Expressão Gênica , Lactotrofos , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Análise de Sequência de RNA , Humanos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Lactotrofos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Transcriptoma , Adulto , Redes Reguladoras de Genes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Biol Reprod ; 110(1): 90-101, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37774351

RESUMO

Mammalian ovulation is induced by a luteinizing hormone surge, which is triggered by elevated plasma estrogen levels; however, chronic exposure to high levels of estradiol is known to inhibit luteinizing hormone secretion. In the present study, we hypothesized that the inhibition of the luteinizing hormone surge by chronic estradiol exposure is due to the downregulation of the estrogen receptor alpha in kisspeptin neurons at hypothalamic anteroventral periventricular nucleus, which is known as the gonadotropin-releasing hormone/luteinizing hormone surge generator. Animals exposed to estradiol for 2 days showed an luteinizing hormone surge, whereas those exposed for 14 days showed a significant suppression of luteinizing hormone. Chronic estradiol exposure did not affect the number of kisspeptin neurons and the percentage of kisspeptin neurons with estrogen receptor alpha or c-Fos in anteroventral periventricular nucleus, but it did affect the number of kisspeptin neurons in arcuate nucleus. Furthermore, chronic estradiol exposure did not affect gonadotropin-releasing hormone neurons. In the pituitary, 14-day estradiol exposure significantly reduced the expression of Lhb mRNA and LHß-immunoreactive areas. Gonadotropin-releasing hormone-induced luteinizing hormone release was also reduced significantly by 14-day estradiol exposure. We revealed that the suppression of an luteinizing hormone surge by chronic estradiol exposure was induced in association with the significant reduction in kisspeptin neurons in arcuate nucleus, luteinizing hormone expression in the pituitary, and pituitary responsiveness to gonadotropin-releasing hormone, and this was not caused by changes in the estrogen receptor alpha-expressing kisspeptin neurons in anteroventral periventricular nucleus and gonadotropin-releasing hormone neurons, which are responsible for estradiol positive feedback.


Assuntos
Estradiol , Hormônio Luteinizante , Feminino , Animais , Hormônio Luteinizante/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios/metabolismo , Mamíferos/metabolismo
3.
J Nippon Med Sch ; 90(5): 364-371, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37558429

RESUMO

Estrogen receptor α (ERα) regulates several physiological functions. In pathophysiological conditions, ERα is involved in the development and progression of estrogen-sensitive tumors. The ERα gene contains multiple 5'-untranslated exons and eight conventional coding exons and presents multiple isoforms generated by alternative promoter usage and alternative splicing. This gene also possesses non-conventional exons in the 3'- and intronic regions, and alternative use of cryptic exons contributes to further diversity of ERα mRNAs and proteins. Recently, the genomic organization of ERα genes and the splicing profiles of their transcripts were comparatively analyzed in humans, mice, and rats, and multiple ERα isoforms with distinct structures and functions were identified. These transcripts contain cryptic sequences that encode insertion-containing or truncated ERα proteins. In particular, alternative cryptic exons with in-frame stop codons yield transcripts encoding C-terminally-truncated ERα proteins. The C-terminally-truncated ERα isoforms lack part or all of the ligand-binding domain but possess an isoform-specific sequence. Some of these isoforms exhibit constitutive transactivation and resistance to estrogen receptor antagonists. Although numerous studies have reported conflicting results regarding their functions, the critical determinant for their gain-of-function has been identified structurally. Here we review recent progress in ERα variant research concerning the genomic organization of ERα genes, splicing profiles of ERα transcripts, and transactivation properties of ERα isoforms.


Assuntos
Processamento Alternativo , Receptor alfa de Estrogênio , Humanos , Ratos , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo/genética , Éxons/genética , RNA Mensageiro/genética
4.
Peptides ; 168: 171064, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507090

RESUMO

Neuropeptide B (NPB) has been identified as an endogenous peptide ligand for the orphan receptor NPBWR1. However, the effect of NPB on the central regulatory mechanisms of reproductive functions remains unclear. Our findings indicated the presence of Npb, Npw (which is another ligand for NPBWR1), and Npbwr1 mRNA in the hypothalamus of male and female rats at each stage of the estrous cycle. Npb mRNA expression was found to be significantly higher in diestrus compared to estrus. The expression of Npw mRNA was one order of magnitude lower than that of Npb mRNA, and Npw mRNA expression in diestrus was significantly higher than that in the other stages of the estrous cycle. Furthermore, Npbwr1 mRNA expression was found to be significantly higher in diestrus compared to the other stages of the estrous cycle and intact males. Notably, estrogen did not alter the expression of Npb, Npw, and Npbwr1 mRNAs in the hypothalamus of females. Central injection of NPB increased plasma luteinizing hormone (LH) levels in both intact males and estrogen-primed ovariectomized females but not in ovariectomized females. These results suggest that NPB-NPBWR1 signaling would be a facilitatory regulatory mechanism in the reproductive function of male and female rats. To the best of our knowledge, this study is the first report to describe the central role of NPB-NPBWR1 signaling in LH regulation in mammals.


Assuntos
Hormônio Luteinizante , Receptores de Neuropeptídeos , Ratos , Animais , Feminino , Masculino , Receptores de Neuropeptídeos/metabolismo , Ligantes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estrogênios , Mamíferos/genética
6.
Peptides ; 160: 170929, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36574861

RESUMO

Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) regulate pulsatile luteinizing hormone (LH) secretion. These neurons express estrogen receptors and are negatively regulated by estrogen. This study aimed to determine whether estrogen supplementation after short-term ovariectomy-induced estrogen depletion has different effects on KNDy neurons depending on the timing of the supplementation. To decrease endogenous estradiol (E2) for a short time, adult female rats received a tube filled with E2 one week after ovariectomy and utilized it one week later (O1w + E). From the results of immunohistochemistry, the response to E2 was attenuated in KNDy neurons of O1w + E rats. Enlarged LH-secreting cells in the anterior pituitary were found in O1w + E rats; however, such enlarged LH cells were not found in ones without previous short-term E2 depletion. From the analysis of LH pulses, plasma LH levels were increased in O1w + E rats relative to ones without previous short-term E2 depletion. These results suggested that once endogenous sex steroids were depleted, the response to E2 in hypothalamic KNDy neurons did not fully recover in one week. Thus, short-term sex steroid depletion due to gonadectomy could alter the response to the sex steroids in KNDy neurons even though the period without sex steroids is only one week, and the alteration is likely to affect plasma hormone levels.


Assuntos
Gonadotrofos , Neurocinina B , Ratos , Feminino , Animais , Neurocinina B/metabolismo , Dinorfinas/metabolismo , Gonadotrofos/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante , Estrogênios , Núcleo Arqueado do Hipotálamo , Neurônios/metabolismo , Hormônio Liberador de Gonadotropina
7.
Front Immunol ; 14: 1251784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259495

RESUMO

Macrophages are essential for the proper inflammatory and reparative processes that lead to regeneration of skeletal muscle after injury. Recent studies have demonstrated close links between the function of activated macrophages and their cellular metabolism. Sterol regulatory element-binding protein 1 (SREBP1) is a key regulator of lipid metabolism and has been shown to affect the activated states of macrophages. However, its role in tissue repair and regeneration is poorly understood. Here we show that systemic deletion of Srebf1, encoding SREBP1, or macrophage-specific deletion of Srebf1a, encoding SREBP1a, delays resolution of inflammation and impairs skeletal muscle regeneration after injury. Srebf1 deficiency impairs mitochondrial function in macrophages and suppresses the accumulation of macrophages at sites of muscle injury. Lipidomic analyses showed the reduction of major phospholipid species in Srebf1 -/- muscle myeloid cells. Moreover, diet supplementation with eicosapentaenoic acid restored the accumulation of macrophages and their mitochondrial gene expression and improved muscle regeneration. Collectively, our results demonstrate that SREBP1 in macrophages is essential for repair and regeneration of skeletal muscle after injury and suggest that SREBP1-mediated fatty acid metabolism and phospholipid remodeling are critical for proper macrophage function in tissue repair.


Assuntos
Macrófagos , Músculo Esquelético , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fosfolipídeos , Regeneração , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Camundongos
8.
Acta Histochem Cytochem ; 55(5): 159-168, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36405553

RESUMO

Despite the physiological significance of ESR2, a lack of well-validated detection systems for ESR2 proteins has hindered progress in ESR2 research. Thus, recent identification of a specific anti-human ESR2 monoclonal antibody (PPZ0506) and its specific cross-reactivity against mouse and rat ESR2 proteins heightened momenta toward development of appropriate immunohistochemical detection systems for rodent ESR2 proteins. Building upon our previous optimization of ESR2 immunohistochemical detection in rats using PPZ0506, in this study, we further aimed to optimize mouse-on-mouse immunohistochemical detection using PPZ0506. Our assessment of several staining conditions using paraffin-embedded ovary sections revealed that intense heat-induced antigen retrieval, appropriate blocking, and appropriate antibody dilutions were necessary for optimization of mouse-on-mouse immunohistochemistry. Subsequently, we applied the optimized immunostaining method to determine expression profiles of mouse ESR2 proteins in peripheral tissues and brain subregions. Our analyses revealed more localized distribution of mouse ESR2 proteins than previously assumed. Moreover, comparison of these results with those obtained in humans and rats using PPZ0506 revealed interspecies differences in ESR2 expression. We expect that our optimized methodology for immunohistochemical staining of mouse ESR2 proteins will help researchers to solve multiple lines of controversial evidence concerning ESR2 expression.

9.
J Nutr Sci Vitaminol (Tokyo) ; 68(3): 162-171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35768247

RESUMO

In the history of modern nutritional science, understanding antioxidants is one of the major topics. In many cases, food-derived antioxidants have π conjugate or thiol group in their molecular structures because π conjugate stabilizes radical by its delocalization and two thiol groups form a disulfide bond in its antioxidative process. In recent years, antioxidant peptides have received much attention because for their ability to scavenge free radicals, inhibition of lipid peroxidation, chelation of transition metal ions, as well as their additional nutritional value. Among them, dipeptides are attracting much interest as post-amino acids, which have residues in common with amino acids, but also have different physiological properties and functions from those of amino acids. Especially, dipeptides containing moieties of several amino acid (tryptophan, tyrosine, histidine, cysteine, and methionine) possess potent antioxidant activity. This review summarizes previous details of structural property, radical scavenging activity, and biological activity of antioxidant dipeptide. Hopefully, this review will help provide a new insight into the study of the biological functions of antioxidant dipeptides.


Assuntos
Antioxidantes , Dipeptídeos , Aminoácidos/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Aditivos Alimentares , Peroxidação de Lipídeos , Compostos de Sulfidrila/química
10.
J Endocrinol ; 253(1): 39-51, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35084363

RESUMO

Kisspeptin neurons, i.e. KNDy neurons, in the arcuate nucleus (ARC) coexpress neurokinin B and dynorphin and regulate gonadotropin-releasing hormone/luteinizing hormone (LH) pulses. Because it remains unclear whether these neurons are associated with reproductive dysfunction in diabetic females, we examined the expression of KNDy neurons detected by histochemistry in streptozotocin (STZ)-induced diabetic female rats 8 weeks after STZ injection. We also evaluated relevant metabolic parameters - glucose, 3-hydroxybutyrate, and non-esterified fatty acids - as indicators of diabetes progression. Severe diabetes with hyperglycemia and severe ketosis suppressed the mRNA expression of KNDy neurons, resulting in low plasma LH levels and persistent diestrus. In moderate diabetes with hyperglycemia and moderate ketosis, kisspeptin-immunoreactive cells and plasma LH levels were decreased, while the mRNA expression of KNDy neurons remained unchanged. Mild diabetes with hyperglycemia and slight ketosis did not affect KNDy neurons and plasma LH levels. The number of KNDy cells was strongly and negatively correlated with plasma 3-hydroxybutyrate levels. The vaginal smear analysis showed unclear proestrus in diabetic rats 3-5 days after STZ injection, and the mRNA expression of kisspeptin in the ARC was decreased 2 weeks after STZ injection in severely diabetic rats. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV), which induce an LH surge, were unaffected at 2 and 8 weeks after STZ injection regardless of the diabetes severity. These results suggest that diabetes mellitus progression in females may negatively affect ARC kisspeptin neurons but not AVPV kisspeptin neurons, implicating a potential role of ARC kisspeptin neurons in menstrual disorder and infertility.


Assuntos
Diabetes Mellitus Experimental , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neurocinina B/genética , Neurônios/metabolismo , Ratos
11.
Nutrients ; 13(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34444965

RESUMO

Population aging has recently been an important issue as the number of elderly people is growing worldwide every year, and the extension of social security costs is financially costly. The increase in the number of elderly people with cognitive decline is a serious problem related to the aging of populations. Therefore, it is necessary to consider not only physical care but also cognitive patterns in the future care of older adults. Since food contains a variety of bioactive substances, dietary patterns may help improve age-related cognitive decline. However, the relationship between cognitive function and individual food components remains ambiguous as no clear efficacy or mechanism has been confirmed. Against this background, this review summarizes previous reports on the biological process of cognitive decline in the elderly and the relationship between individual compounds in foods and cognitive function, as well as the role of individual components of food in cognitive function, in the following order: lipids, carotenoids, vitamins, phenolic compounds, amino acids, peptides, and proteins. Based on the research presented in this review, a proper diet that preserves cognitive function has the potential to improve age-related cognitive decline, Alzheimer's disease, and Parkinson's disease. Hopefully, this review will help to trigger the development of new foods and technologies that improve aging and cognitive functions and extend the healthy life span.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Dieta/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional/fisiologia , Estresse Oxidativo
12.
Peptides ; 142: 170546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33794282

RESUMO

Metabolic stress resulting from either lack or excess of nutrients often causes infertility in both sexes. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) has been suggested to be a key players in reproduction via direct stimulation of the pulsatile gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. In this study, we investigated the effect of high-fat diet (HFD) on hypothalamic KNDy gene expression to examine the pathogenic mechanism underlying obesity-induced infertility in male and female rats. Male and female rats at 7 weeks of age were fed with either a standard or HFD for 4 months. In the male rats, the HFD caused a significant suppression of ARC Kiss1 and Pdyn gene expressions, but did not affect the plasma luteinizing hormone (LH) levels and sizes of the morphology of the testis and epididymis. In the female rats, 58% of the HFD-fed female rats exhibited irregular estrous cycles, whereas the remaining rats showed regular cycles. Two of the 10 rats that showed HFD-induced irregular estrous cycles showed profound suppression of LH pulse frequency and the number of ARC Kiss1-expressing cells, whereas the other females showed normal LH pulses and ARC Kiss1 expression. Our finding shows that suppression of ARC Kiss1 expression might be the initial pathological change of hypogonadotropic hypogonadism in HFD-fed male rats, while the obese-related infertility in the female rats may be mainly induced by KNDy-independent pathways. Taken together, ARC kisspeptin neurons in male rats may be susceptible to HFD-induced obesity compared with those in female rats.


Assuntos
Núcleo Arqueado do Hipotálamo/patologia , Hormônios Esteroides Gonadais/farmacologia , Hipogonadismo/patologia , Hormônio Luteinizante/metabolismo , Doenças Metabólicas/complicações , Neurônios/patologia , Obesidade/complicações , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Dinorfinas/genética , Dinorfinas/metabolismo , Feminino , Hipogonadismo/etiologia , Hipogonadismo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Neurocinina B/genética , Neurocinina B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar
13.
Mol Cell Endocrinol ; 523: 111145, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400952

RESUMO

Although there are few well-validated antibodies against ESR2 proteins, a recent validation assessment identified a specific monoclonal antibody against human ESR2 proteins (PPZ0506). Furthermore, our previous study confirmed its cross-reactivity and specificity against rodent ESR2 proteins, enabling the determination of true ESR2 distribution profiles in rodents. Therefore, we aimed to determine optimal conditions for ESR2 detection by PPZ0506 immunostaining and analyze ESR2 distribution in rats. We evaluated several staining conditions using paraffin-embedded and frozen ovary sections. Immunohistochemical staining with PPZ0506 antibody required strong antigen retrieval and appropriate antibody dilution. Subsequent immunohistochemical analysis in multiple tissues under optimized conditions revealed that rat ESR2 proteins are expressed in a more localized manner than previously assumed. Our results suggest that previous immunohistochemical studies using inadequately validated antibodies against ESR2 proteins overestimated their distribution profiles. We expect that optimized immunohistochemical detection with PPZ0506 antibody can help researchers solve several conflicting problems in ESR2 research.


Assuntos
Anticorpos Monoclonais/metabolismo , Receptor beta de Estrogênio/metabolismo , Animais , Antígenos/metabolismo , Receptor beta de Estrogênio/genética , Feminino , Secções Congeladas , Temperatura Alta , Imuno-Histoquímica , Especificidade de Órgãos , Ovário/metabolismo , Inclusão em Parafina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes
14.
J Nippon Med Sch ; 88(1): 54-62, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32238740

RESUMO

BACKGROUND: The nuclear receptor genes, including estrogen receptor ß (ERß), contain non-conventional internal and terminal exons, and alternative choice of the exons yields multiple mRNA and protein variants with unique structures and functions. However, the genomic structure of the intronic and 3'-downstream regions of the human ERß gene and the presence of novel ERß variants with non-conventional sequences have not been re-examined in about 20 years. Therefore, we attempted to re-characterize the structure of the human ERß gene and identify novel non-conventional exons and distinct splice variants. METHODS: Rapid amplification of cDNA 3'-end and RT-PCR cloning were used to isolate human ERß mRNA variants from the testis. The identified cDNA sequences were mapped on the human genome assembly. Expression profiles of the variants were assessed by RT-PCR analysis. RESULTS: We cloned multiple ERß mRNA variants with novel nucleotide sequences from the testis and identified several alternative splice sites, 3'-elongation of conventional coding exons, and novel terminal exons in the human ERß gene. The variants encode C-terminally truncated ERß proteins termed ERß6, ERß7, ERßEx. 4L, and ERßEx. 6L. Furthermore, we identified exon 7-defective forms of ERß2/ßcx, ERß4, ERß6, and ERß7. Subsequently, we noted distinct expression patterns of the variants in human peripheral organs and brain subregions. CONCLUSION: This study clarified complicated genomic organization and splicing patterns of the human ERß gene that contribute to the distinct heterogeneity of human ERß mRNAs and proteins.


Assuntos
Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Éxons/genética , Variação Genética , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Testículo/metabolismo , Distribuição Tecidual , Transcrição Gênica
15.
Data Brief ; 33: 106452, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145383

RESUMO

Expression profiles of gonadal steroid receptor variants have been reportedly associated with malignancy in breast and prostate cancers [1,2]. However, such associations with pituitary tumors remain unclear. Therefore, the expression levels of the wild-type ESR1 (ERα66) and the ESR1 variants (ERαi34, ERαi45c, and ERαΔ5) transcripts encoding constitutively active ERα proteins with C-terminal truncation in non-functioning pituitary adenomas (NFPAs) were evaluated using reverse transcription-digital polymerase chain reaction. The results revealed that the expression levels of the variants were approximately two orders of magnitude lower than that of ERα66 in NFPAs. These data were based on our previous article entitled "Accurate assessment of estrogen receptor profiles in non-functioning pituitary adenomas using RT-digital PCR and immunohistochemistry" [3].

16.
Metabolites ; 10(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139606

RESUMO

As the physical properties and functionality of dipeptides differ from those of amino acids, they have attracted attention in metabolomics; however, their functions in vivo have not been clarified in detail. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and its major cause is chronic hepatitis. This study was conducted to explore tumor-specific dipeptide characteristics by performing comprehensive dipeptide analysis in the tumor and surrounding nontumor tissue of patients with HCC. Dipeptides were analyzed by liquid chromatography tandem mass spectrometry and capillary electrophoresis tandem mass spectrometry. Principal component analysis using 236 detected dipeptides showed differences in the dipeptide profiles between nontumor and tumor tissues; however, no clear difference was observed in etiological comparison. In addition, the N- and C-terminal amino acid compositions of the detected dipeptides significantly differed, suggesting the substrate specificity of enzyme proteins, such as peptidase. Furthermore, hepatitis-derived HCC may show a characteristic dipeptide profile even before tumor formation. These results provide insight into HCC pathogenesis and may help identify novel biomarkers for diagnosis.

17.
J Reprod Dev ; 66(6): 579-586, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-32968033

RESUMO

Kisspeptin has an indispensable role in gonadotropin-releasing hormone/gonadotropin secretion in mammals. In rodents, kisspeptin neurons are located in distinct brain regions, namely the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), arcuate nucleus (ARC), and medial amygdala (MeA). Among them, the physiological role of AVPV/PeN kisspeptin neurons in males has not been clarified yet. The present study aims to investigate the acute effects of the olfactory and/or mating stimulus with a female rat on hypothalamic and MeA Kiss1 mRNA expression, plasma luteinizing hormone (LH) and testosterone levels in male rats. Intact male rats were exposed to the following stimuli: exposure to clean bedding; exposure to female-soiled bedding as a female-olfactory stimulus; exposure to female-soiled bedding and mating stimulus with a female rat. The mating stimulus significantly increased the number of the AVPV/PeN Kiss1 mRNA-expressing cells in males within 5 minutes after the exposure, and significantly increased LH and testosterone levels, followed by an increase in male sexual behavior. Whereas, the males exposed to female-soiled bedding showed a moderate increase in LH levels and no significant change in testosterone levels and the number of the AVPV/PeN Kiss1 mRNA-expressing cells. Importantly, none of the stimuli affected the number of Kiss1 mRNA-expressing cells in the ARC and MeA. These results suggest that the mating-induced increase in AVPV/PeN Kiss1 mRNA expression may be, at least partly, involved in stimulating LH and testosterone release, and might consequently ensure male mating behavior. This study would be the first report suggesting that the AVPV/PeN kisspeptin neurons in males may play a physiological role in ensuring male reproductive performance.


Assuntos
Hipotálamo Anterior/metabolismo , Kisspeptinas/biossíntese , Hormônio Luteinizante/metabolismo , Comportamento Sexual Animal , Testosterona/metabolismo , Animais , Encéfalo/metabolismo , Comunicação Celular/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Olfato
18.
Life Sci ; 260: 118416, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926922

RESUMO

BACKGROUND: Non-functioning pituitary adenomas (NFPAs) are common pituitary tumors, and surgery is generally the only treatment option. Few attempts have been made to explore target molecules for the development of NFPA pharmacological treatments. METHOD: We quantitatively assessed the expression profiles of estrogen receptor (ER) transcripts and proteins in NFPA samples, using reverse transcription-digital polymerase chain reaction (RT-dPCR) and immunohistochemistry, and further investigated the correlations between the expression levels of ER and those of downstream responsive genes. All patients had undergone surgery at the same high-volume hospital. A total of 20 patients with NFPAs were included. All patients were new-onset, and none were diagnosed with intratumoral hemorrhages or cysts. RESULTS: NFPA samples exhibited a bimodal ESR1 expression pattern and were categorized into significantly different high- and low-ESR1 expression level groups (P < 0.05). In contrast, expression levels of ESR1 variants and ESR2 could barely be detected. Similar results were obtained through the immunohistochemical staining of NFPAs, using well-validated antibodies against ERs. The expression levels of ESR1 positively correlated with those of GREB1, an estrogen-responsive gene [correlation coefficient (r) = 0.623, P = 0.003]. CONCLUSIONS: ESR1 expression levels in NFPAs exhibited a bimodal pattern and were positively correlated with GREB1 expression levels. The accurate assessment of ER expression levels may further advance future NFPA-related research.


Assuntos
Adenoma/patologia , Biomarcadores Tumorais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hipofisárias/patologia , Adenoma/genética , Adenoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Mol Cell Endocrinol ; 503: 110693, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881246

RESUMO

Constitutively active estrogen receptor α (ERα) variants with C-terminal truncation are candidate molecules for gain of both endocrine- and chemotherapy-resistance in estrogen-sensitive tumors. Our previous reports using artificially truncated ERα constructs demonstrated that ERα variants encoded in 1-2-3-cryptic exon- and 1-2-3-4-cryptic exon-types of transcripts have potentials to display constitutive transactivation of an estrogen response element reporter. However, naturally occurring 1-2-3-cryptic exon-type ERα variants have not been cloned yet. Therefore, the present study was designed to identify naturally occurring ERα variants encoded in 1-2-3-cryptic exon-type ERα transcripts. We cloned a novel C-terminally truncated ERα variant (ERαi34) encoded in a 1-2-3-i34 transcript from MCF-7 cells and characterized its constitutive and ER antagonist-resistant transactivation in transfected cells. Stable transfection of the variant into MCF-7 cells augmented basal cell proliferation insensitive to fulvestrant. Collectively, we validated the structure-based mechanisms underlying constitutive and ER antagonist-resistant transactivation by C-terminally truncated ERα variants.


Assuntos
Resistência a Medicamentos/genética , Receptor alfa de Estrogênio/genética , Ativação Transcricional/genética , Processamento Alternativo/genética , Animais , Células COS , Chlorocebus aethiops , Antagonistas do Receptor de Estrogênio/farmacologia , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Ligação Proteica/genética , Domínios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética
20.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847265

RESUMO

Several lines of controversial evidence concerning estrogen receptor ß (ERß) remain to be solved because of the unavailability of specific antibodies against ERß. The recent validation analysis identified a monoclonal antibody (PPZ0506) with sufficient specificity against human ERß. However, the specificity and cross-reactivity of PPZ0506 antibody against ERß proteins from laboratory animals have not been confirmed. In the present study, we aimed to validate the applicability of PPZ0506 to rodent studies. The antibody exhibited specific cross-reactivity against mouse and rat ERß proteins in immunoblot and immunocytochemical experiments using transfected cells. In immunohistochemistry for rat tissue sections, PPZ0506 showed immunoreactive signals in the ovary, prostate, and brain. These immunohistochemical profiles of rat ERß proteins in rat tissues accord well with its mRNA expression patterns. Although the antibody was reported to show the moderate signals in human testis, no immunoreactive signals were observed in rat testis. Subsequent RT-PCR analysis revealed that this species difference in ERß expression resulted from different expression profiles related to the alternative promoter usage between humans and rats. In conclusion, we confirmed applicability of PPZ0506 for rodent ERß studies, and our results provide a fundamental basis for further examination of ERß functions.


Assuntos
Anticorpos Monoclonais Murinos/química , Receptor beta de Estrogênio/biossíntese , Animais , Humanos , Imuno-Histoquímica , Camundongos , Especificidade de Órgãos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA