Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12809, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488870

RESUMO

Celastrol is a leptin-sensitizing agent with profound anti-obesity effects in diet-induced obese (DIO) mice. However, the genes and pathways that mediate celastrol-induced leptin sensitization have not been fully understood. By comparing the hypothalamic transcriptomes of celastrol and vehicle-treated DIO mice, we identified lipocalin-2 (Lcn2) as the gene most strongly upregulated by celastrol. LCN2 was previously suggested as an anorexigenic and anti-obesity agent. Celastrol increased LCN2 protein levels in hypothalamus, liver, fat, muscle, and bone marrow, as well as in the plasma. However, genetic deficiency of LCN2 altered neither the development of diet-induced obesity, nor the ability of celastrol to promote weight loss and improve obesity-associated dyshomeostasis. We conclude that LCN2 is dispensable for both high fat diet-induced obesity and its therapeutic reduction by celastrol.


Assuntos
Fármacos Antiobesidade/farmacologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Lipocalina-2/fisiologia , Triterpenos/farmacologia , Redução de Peso/efeitos dos fármacos , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Lipocalina-2/deficiência , Lipocalina-2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Triterpenos Pentacíclicos
2.
Mol Metab ; 7: 119-131, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129613

RESUMO

OBJECTIVE: Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) promotes hepatic gluconeogenesis by activating HNF4α and FoxO1. PGC-1α expression in the liver is highly elevated in obese and diabetic conditions, leading to increased hepatic glucose production. We previously showed that the spliced form of X-box binding protein 1 (XBP1s) suppresses FoxO1 activity and hepatic gluconeogenesis. The shared role of PGC-1α and XBP1s in regulating FoxO1 activity and gluconeogenesis led us to investigate the probable interaction between PGC-1α and XBP1s and its role in glucose metabolism. METHODS: We investigated the biochemical interaction between PGC-1α and XBP1s and examined the role of their interaction in glucose homeostasis using animal models. RESULTS: We show that PGC-1α interacts with XBP1s, which plays an anti-gluconeogenic role in the liver by suppressing FoxO1 activity. The physical interaction between PGC-1α and XBP1s leads to suppression of XBP1s activity rather than its activation. Upregulating PGC-1α expression in the liver of lean mice lessens XBP1s protein levels, and reducing PGC-1α levels in obese and diabetic mouse liver restores XBP1s protein induction. CONCLUSIONS: Our findings reveal a novel function of PGC-1α as a suppressor of XBP1s function, suggesting that hepatic PGC-1α promotes gluconeogenesis through multiple pathways as a co-activator for HNF4α and FoxO1 and also as a suppressor for anti-gluconeogenic transcription factor XBP1s.


Assuntos
Gluconeogênese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteína Forkhead Box O1/metabolismo , Homeostase , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ligação Proteica , Proteína 1 de Ligação a X-Box/genética
3.
Cell ; 167(4): 1052-1066.e18, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814504

RESUMO

It is widely believed that inflammation associated with obesity has an important role in the development of type 2 diabetes. IκB kinase beta (IKKß) is a crucial kinase that responds to inflammatory stimuli such as tumor necrosis factor α (TNF-α) by initiating a variety of intracellular signaling cascades and is considered to be a key element in the inflammation-mediated development of insulin resistance. We show here, contrary to expectation, that IKKß-mediated inflammation is a positive regulator of hepatic glucose homeostasis. IKKß phosphorylates the spliced form of X-Box Binding Protein 1 (XBP1s) and increases the activity of XBP1s. We have used three experimental approaches to enhance the IKKß activity in the liver of obese mice and observed increased XBP1s activity, reduced ER stress, and a significant improvement in insulin sensitivity and consequently in glucose homeostasis. Our results reveal a beneficial role of IKKß-mediated hepatic inflammation in glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Linhagem Celular Tumoral , Homeostase , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Fosforilação , Estabilidade Proteica
4.
Cell Metab ; 20(1): 73-84, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24836559

RESUMO

Bromodomain-containing protein 7 (BRD7) is a member of the bromodomain-containing protein family that is known to play a role as tumor suppressors. Here, we show that BRD7 is a component of the unfolded protein response (UPR) signaling through its ability to regulate X-box binding protein 1 (XBP1) nuclear translocation. BRD7 interacts with the regulatory subunits of phosphatidylinositol 3-kinase (PI3K) and increases the nuclear translocation of both p85α and p85ß and the spliced form of XBP1 (XBP1s). Deficiency of BRD7 blocks the nuclear translocation of XBP1s. Furthermore, our in vivo studies have shown that BRD7 protein levels are reduced in the liver of obese mice, and reinstating BRD7 levels in the liver restores XBP1s nuclear translocation, improves glucose homeostasis, and ultimately reduces the blood glucose levels in the obese and diabetic mouse models.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinase/deficiência , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/química , Proteína 1 de Ligação a X-Box
5.
Biochem Biophys Res Commun ; 443(2): 689-93, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333417

RESUMO

Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.


Assuntos
Glicemia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Serina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína 1 do Complexo Esclerose Tuberosa
6.
Nat Med ; 17(3): 356-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21317886

RESUMO

To date, the only known role of the spliced form of X-box-binding protein-1 (XBP-1s) in metabolic processes has been its ability to act as a transcription factor that regulates the expression of genes that increase the endoplasmic reticulum (ER) folding capacity, thereby improving insulin sensitivity. Here we show that XBP-1s interacts with the Forkhead box O1 (FoxO1) transcription factor and directs it toward proteasome-mediated degradation. Given this new insight, we tested modest hepatic overexpression of XBP-1s in vivo in mouse models of insulin deficiency or insulin resistance and found it improved serum glucose concentrations, even without improving insulin signaling or ER folding capacity. The notion that XBP-1s can act independently of its role in the ER stress response is further supported by our finding that in the severely insulin resistant ob/ob mouse strain a DNA-binding-defective mutant of XBP-1s, which does not have the ability to increase ER folding capacity, is still capable of reducing serum glucose concentrations and increasing glucose tolerance. Our results thus provide the first evidence to our knowledge that XBP-1s, through its interaction with FoxO1, can bypass hepatic insulin resistance independent of its effects on ER folding capacity, suggesting a new therapeutic approach for the treatment of type 2 diabetes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Glucose/metabolismo , Homeostase , Fatores de Transcrição/fisiologia , Animais , Glicemia/análise , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteína Forkhead Box O1 , Hidrólise , Resistência à Insulina , Fígado/metabolismo , Camundongos , Mutação , Fosforilação , Receptor de Insulina/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
7.
Mol Cell ; 29(5): 541-51, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18342602

RESUMO

Mammalian target of rapamycin, mTOR, is a major sensor of nutrient and energy availability in the cell and regulates a variety of cellular processes, including growth, proliferation, and metabolism. Loss of the tuberous sclerosis complex genes (TSC1 or TSC2) leads to constitutive activation of mTOR and downstream signaling elements, resulting in the development of tumors, neurological disorders, and at the cellular level, severe insulin/IGF-1 resistance. Here, we show that loss of TSC1 or TSC2 in cell lines and mouse or human tumors causes endoplasmic reticulum (ER) stress and activates the unfolded protein response (UPR). The resulting ER stress plays a significant role in the mTOR-mediated negative-feedback inhibition of insulin action and increases the vulnerability to apoptosis. These results demonstrate ER stress as a critical component of the pathologies associated with dysregulated mTOR activity and offer the possibility to exploit this mechanism for new therapeutic opportunities.


Assuntos
Apoptose/fisiologia , Insulina/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos/metabolismo , Linhagem Celular , Pré-Escolar , Retículo Endoplasmático/metabolismo , Genes Supressores de Tumor , Humanos , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos , Neoplasias/metabolismo , Neoplasias/patologia , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo , Fenilbutiratos/metabolismo , Proteínas , Sirolimo/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
8.
Science ; 313(5790): 1137-40, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16931765

RESUMO

Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Fenilbutiratos/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/metabolismo , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Homeostase , Insulina/sangue , Insulina/farmacologia , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Obesos , Fenilbutiratos/uso terapêutico , Fosforilação , Receptor de Insulina/metabolismo , Transdução de Sinais , Ácido Tauroquenodesoxicólico/uso terapêutico , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA