Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 263: 124679, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257237

RESUMO

In this study, a molecularly imprinted polymer film (P (ANI)@MIP) on the electrode surface was fabricated using aniline as a functional monomer and octreotide (OC) as a template molecule. The developed P (ANI)@MIP was electrochemically electropolymerized on a glassy carbon electrode (GCE) surface. Each step of MIP production was evaluated by viewing the [Fe (CN)6]3-/4- signal obtained using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The P (ANI)@MIP film layer was studied with a scanning electron microscope (SEM), Raman, and contact angle measurements. The parameters consisting of monomer, template ratio, cycle number, removal solution, removal time, and rebinding time were optimized to obtain the best electrochemical sensor. The developed method was validated in line with ICH guidelines. The linear range, LOD, and LOQ were found as 10-80 fM, 0.801 fM, and 2.670 fM, respectively. The selectivity of the method was tested with the response of somatostatin and lanreotide from the same growth hormone family by comparing the OC response. The developed P (ANI)@MIP/GCE sensor is the first reported method for electrochemical analysis of OC. The P (ANI)@MIP/GCE sensor exhibited high sensitivity and selectivity for OC. The novel MIP sensor was used to determine OC in cancer patient plasma samples. The concentration of OC in cancer patients varied between 8.98 ng/mL and 10.10 ng/mL.


Assuntos
Impressão Molecular , Neoplasias , Humanos , Polímeros/química , Octreotida , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Carbono/química , Eletrodos , Limite de Detecção
2.
J Pharm Biomed Anal ; 231: 115411, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094410

RESUMO

Nucleic acid-based analytical bioplatforms have gained importance as diagnostic tests for genomics and as early detection tools for diseases such as cancer. In this context, we report the development of an amperometric bioplatform for the determination of a specific human papillomavirus type 16 (HPV16) sequence. The bioplatform utilizes an immune-nucleic acid hybrid-sandwich assay. A biotinylated RNA capture probe (RNAbCp), complementary to the selected HPV16 target DNA sequence, was immobilised on the surface of streptavidin coated magnetic microbeads (Strep-MBs). The RNA/DNA heteroduplex resulting from the hybridization of the RNAbCP and the HPV16 target sequence was recognised by a commercial antibody that specifically bound to the heteroduplex (AbDNA-RNA). A horseradish-peroxide labeled secondary antibody (antiIgG-HRP) was used for the detection of AbDNA-RNA. Relying on amperometric detection of the resulting HRP-labeled magnetic bioconjugates captured on screen-printed electrodes (SPCEs) in the presence of H2O2 and hydroquinone (HQ), the biotool achieved a low limit of detection (0.5 pM) for the synthetic HPV16 target DNA. In addition, the developed bioplatform was able to discriminate between HPV16 positive and negative human cancer cells using only 25 ng of amplified DNA in a test time of 45 min.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Papillomavirus Humano , Carcinógenos , Peróxido de Hidrogênio , DNA , RNA , Anticorpos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos
3.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832048

RESUMO

Heart failure (HF) is a cardiovascular disease defined by several symptoms that occur when the heart cannot supply the blood needed by the tissues. HF, which affects approximately 64 million people worldwide and whose incidence and prevalence are increasing, has an important place in terms of public health and healthcare costs. Therefore, developing and enhancing diagnostic and prognostic sensors is an urgent need. Using various biomarkers for this purpose is a significant breakthrough. It is possible to classify the biomarkers used in HF: associated with myocardial and vascular stretch (B-type natriuretic peptide (BNP), N-terminal proBNP and troponin), related to neurohormonal pathways (aldosterone and plasma renin activity), and associated with myocardial fibrosis and hypertrophy (soluble suppression of tumorigenicity 2 and galactin 3). There is an increasing demand for the design of fast, portable, and low-cost biosensing devices for the biomarkers related to HF. Biosensors play a significant role in early diagnosis as an alternative to time-consuming and expensive laboratory analysis. In this review, the most influential and novel biosensor applications for acute and chronic HF will be discussed in detail. These studies will be evaluated in terms of advantages, disadvantages, sensitivity, applicability, user-friendliness, etc.


Assuntos
Técnicas Biossensoriais , Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Prognóstico , Biomarcadores , Fragmentos de Peptídeos , Doença Crônica
4.
Turk J Chem ; 47(5): 927-943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173762

RESUMO

Cancer, becoming increasingly common globally, has a high mortality rate. Despite the much research on diagnosis and treatment methods, the benefits of technological developments, and newly developed sensor devices, cancer is still one of the leading causes of death worldwide. Early detection using powerful and noninvasive tools could be a future focus for prognosis and treatment follow-up. Therefore, electrochemical biosensors can be a strong choice for the detection of cancer biomarkers (such as alpha-fetoprotein, cytochrome c, prostate-specific antigen, myoglobin, carcinoembryonic antigen, alpha-fetoprotein, a cancer antigen, epidermal growth factor receptor, vascular endothelial growth factor, circulating tumor cell, and breast cancer antigen 1/2) due to their advantages such as high sensitivity, excellent selectivity, low cost, short analysis time, and simplicity. Furthermore, electrochemical biosensors are better suited for point-of-care applications due to their mass production and miniaturization ease. This review provides an overview of different electrochemical measurement techniques, bioreceptor surfaces, signal production and amplification, and the integration of electrochemical-modified sensors. Cancer biomarkers based on electrochemical biosensors were given in detail. In addition, studies with MIP-based sensors and immunosensors have been extensively discussed. Integrating electrochemical biosensors with cancer biomarkers was also emphasized as a new research trend. Finally, we provide an overview of current advances in measuring and analyzing cancer biomarkers using electrochemical biosensors and detail current challenges and future perspectives.

5.
Biosensors (Basel) ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551133

RESUMO

In this work, immobilizing anti-GFAP antibodies via covalent attachment onto L-cysteine/gold nanoparticles that were modified with screen-printed carbon electrodes (Anti-GFAP/L-cys/AuNps/SPCE) resulted in the development of a sensitive label-free impedance immunosensor for the detection of Glial Fibrillary Acidic Protein (GFAP). The immunosensor's stepwise construction was studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). L-cysteine was chosen as the linker between GFAP antibodies and Au NPs/SPCE because it enables the guided and stable immobilization of GFAP antibodies, thus resulting in increased immunosensor sensitivity. As a redox probe, 5 mM of [Fe(CN)6]3-/4- was used to measure the electron-transfer resistance (Ret), which was raised by the binding of antigens to the immobilized anti-GFAP on the surface of the modified electrode. A linear correlation between Rct and GFAP concentration was achieved under optimum conditions in the range of 1.0-1000.0 pg/mL, with an extraordinarily low detection limit of 51.0 fg/mL. The suggested immunosensor was successfully used to detect the presence of GFAP in human blood serum samples, yielding good findings. As a result, the proposed platform may be utilized to monitor central nervous system injuries.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Ouro/química , Imunoensaio/métodos , Soro , Proteína Glial Fibrilar Ácida , Técnicas Biossensoriais/métodos , Cisteína , Nanopartículas Metálicas/química , Eletrodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
6.
Crit Rev Anal Chem ; : 1-20, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35917408

RESUMO

The rapid quantification of toxins in food and beverage products has become a significant issue in overcoming and preventing many life-threatening diseases. Aflatoxin-contaminated food is one of the reasons for primary liver cancer and induces some tumors and cancer types. Advancements in biosensors technology have brought out different analysis methods. Therefore, the sensing performance has been improved for agricultural and beverage industries or food control processes. Nanomaterials are widely used for the enhancement of sensing performance. The enzymes, molecularly imprinted polymers (MIP), antibodies, and aptamers can be used as biorecognition elements. The transducer part of the biosensor can be selected, such as optical, electrochemical, and mass-based. This review explains the classification of major types of aflatoxins, the importance of nanomaterials, electrochemical, optical biosensors, and QCM and their applications for the determination of aflatoxins.

7.
Anal Chim Acta ; 1187: 339143, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753569

RESUMO

A novel methodology has been applied to generate a porous molecularly imprinted material for highly selective and sensitive recognition of Janus kinase inhibitor ruxolitinib (RUX). The porous material-based nucleobase-derivative functional monomer was developed by a photopolymerization method. The thymine methacrylate (ThyM) as a functional monomer was synthesized and copolymerized with 2-hydroxyethyl methacrylate (HEMA) in the presence of ethylene glycol dimethacrylate (EGDMA) onto the glassy carbon electrode [glassy carbon electrode/molecularly imprinted polymer@poly(2-hydroxyethyl methacrylate-co-thymine methacrylate), (GCE/MIP@PHEMA-ThyM)] for the first time. The presence of ThyM results in the functional groups in imprinting binding sites, while the presence of poly(vinyl alcohol) (PVA) allows to generate porous materials for sensitive sensing. The characterization of GCE/MIP@PHEMA-ThyM was investigated by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and impedance spectroscopy technique. Then, the porous MIP modified glassy carbon electrode was optimized with effecting parameters including removal agent, removal time, and incubation time to get a better response for RUX. Under well-controlled optimum conditions, the GCE/MIP@PHEMA-ThyM linearly responded to the RUX concentration up to 0.01 pM at the limit of detection (LOD) of 0.00191 pM. The non-imprinted polymer (NIP) was also prepared to serve as a control in the same way but without the template. The proposed method improves the accessibility of binding sites by generating the porous material resulting in highly selective and sensitive recognition of drugs in the pharmaceutical dosage form and synthetic human serum samples.


Assuntos
Antineoplásicos , Impressão Molecular , Humanos , Nitrilas , Porosidade , Pirazóis , Pirimidinas , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Talanta ; 233: 122569, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215065

RESUMO

In this study, a novel, fast, selective, and sensitive molecularly imprinted polymer (MIP)-based electrochemical sensor was developed to determine axitinib (AXI) at low concentrations in pharmaceutical dosage forms and human serum. The newly developed MIP-based sensor (MIP@o-PD/GCE) was designed through electropolymerization of functional monomer o-phenylenediamine (o-PD) in the presence of a template molecule AXI, on a glassy carbon electrode (GCE) using cyclic voltammetry. Differential pulse voltammetry and electrochemical impedance spectroscopy (EIS) techniques were employed for removal and rebinding processes, optimization of conditions, as well as for performance evaluation of MIP@o-PD/GCE using [Fe(CN)6]3-/4- as the redox probe. Under the optimum experimental conditions, MIP@o-PD/GCE shows a linear response toward AXI in a range of 1 × 10-13 M - 1 × 10-12 M. The limit of the detection value of MIP@o-PD/GCE was found as 0.027 pM while the limit of the quantification was obtained as 0.089 pM, respectively. To demonstrate the applicability and validity of the developed sensor, it was successfully applied to tablet dosage form and human serum sample. The selectivity of the sensor was qualified by comparing the binding of AXI, erlotinib, dasatinib, nilotinib, and imatinib, which are similarly structured and in the same group of anticancer drugs. MIP@o-PD/GCE sensor showed a significant selectivity toward AXI. The non-imprinted polymer (NIP) based GCE was prepared and used to control the analytical performance of the MIP-based electrochemical sensor.


Assuntos
Antineoplásicos , Impressão Molecular , Axitinibe , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção
9.
J Pharm Biomed Anal ; 159: 406-424, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036704

RESUMO

Cardiovascular disease is the most reason for deaths in all over the world. Hence, biomarkers of cardiovascular diseases are very crucial for diagnosis and management process. Biomarker detection demand is opened the important way in biosensor development field. Rapid, cheap, portable, precise, selective and sensitive biomarker sensing devices are needed at this point to detect and predict disease. A cardiac biomarker can be orderable as C-reactive protein, troponin I or T, myoglobin, tumor necrosis factor alpha, interleukin-6, interleukin-1, lipoprotein-associated phospholipase, low-density lipoprotein and myeloperoxidase. They are used for prediction of cardiovascular diseases. There are many methods for early diagnosis of cardiovascular diseases, but these have long time process and expensive devices. In recent studies, different biosensors have been developed to remove the problems in this field. Electrochemical devices and developed biosensors have many superiorities than others such as low cost, mobile, reliable, repeatable, need a little amount of solution. In this review, recent studies were presented as details for cardiovascular disease biomarkers detection using electrochemical methods.


Assuntos
Técnicas Biossensoriais/métodos , Doenças Cardiovasculares/sangue , Diagnóstico Precoce , Técnicas Eletroquímicas/métodos , Biomarcadores/sangue , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA