Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 366(2-3): 525-37, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16360767

RESUMO

The comprehensive individual field-measurements on non-dietary exposure collected in the Children's-Post-Pesticide-Application-Exposure-Study (CPPAES) were used within MENTOR/SHEDS-Pesticides, a physically based stochastic human exposure and dose model. In this application, however, the model was run deterministically. The MENTOR/SHEDS-Pesticides employed the CPPAES as input variables to simulate the exposure and the dose profiles for seven children over a 2-week post-application period following a routine residential and professional indoor crack-and-crevice chlorpyrifos application. The input variables were obtained from a personal activity diary, microenvironmental measurements and personal biomonitoring data obtained from CPPAES samples collected from the individual children and in their homes. Simulation results were compared with CPPAES field measured values obtained from the children's homes to assess the utility of the different microenvironmental data collected in CPPAES, i.e. indicator toys and wipe samplers to estimate aggregate exposures that can be result from one or more exposure pathways and routes. The final analyses of the database involved comparisons of the actual data obtained from the individual biomarker samples of a urinary metabolite of chlorpyrifos (TCPy) and the values predicted by MENTOR/SHEDS-Pesticides using the CPPAES-derived variables. Because duplicate diet samples were not part of the CPPAES study design, SHEDs-Pesticides simulated dose profiles did not account for the dietary route. The research provided more confidence in the types of data that can be used in the inhalation and dermal contact modules of MENTOR/SHEDS-Pesticides to predict the pesticide dose received by a child. It was determined that we still need additional understanding about: (1) the types of activities and durations of activities that result in non-dietary ingestion of pesticides and (2) the influence of dietary exposures on the levels of TCPy found in the urine.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Clorpirifos/análise , Exposição Ambiental/análise , Modelos Biológicos , Praguicidas/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/farmacocinética , Poluentes Atmosféricos/urina , Criança , Clorpirifos/farmacocinética , Clorpirifos/urina , Monitoramento Ambiental , Habitação , Humanos , Praguicidas/farmacocinética , Praguicidas/urina , Jogos e Brinquedos
2.
J Expo Anal Environ Epidemiol ; 15(5): 439-57, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15714222

RESUMO

A novel source-to-dose modeling study of population exposures to fine particulate matter (PM(2.5)) and ozone (O(3)) was conducted for urban Philadelphia. The study focused on a 2-week episode, 11-24 July 1999, and employed the new integrated and mechanistically consistent source-to-dose modeling framework of MENTOR/SHEDS (Modeling Environment for Total Risk studies/Stochastic Human Exposure and Dose Simulation). The MENTOR/SHEDS application presented here consists of four components involved in estimating population exposure/dose: (1) calculation of ambient outdoor concentrations using emission-based photochemical modeling, (2) spatiotemporal interpolation for developing census-tract level outdoor concentration fields, (3) calculation of microenvironmental concentrations that match activity patterns of the individuals in the population of each census tract in the study area, and (4) population-based dosimetry modeling. It was found that the 50th percentiles of calculated microenvironmental concentrations of PM(2.5) and O(3) were significantly correlated with census-tract level outdoor concentrations, respectively. However, while the 95th percentiles of O(3) microenvironmental concentrations were strongly correlated with outdoor concentrations, this was not the case for PM(2.5). By further examining the modeled estimates of the 24-h aggregated PM(2.5) and O(3) doses, it was found that indoor PM(2.5) sources dominated the contributions to the total PM(2.5) doses for the upper 5 percentiles, Environmental Tobacco Smoking (ETS) being the most significant source while O(3) doses due to time spent outdoors dominated the contributions to the total O(3) doses for the upper 5 percentiles. The MENTOR/SHEDS system presented in this study is capable of estimating intake dose based on activity level and inhalation rate, thus completing the source-to-dose modeling sequence. The MENTOR/SHEDS system also utilizes a consistent basis of source characterization, exposure factors, and human activity patterns in conducting population exposure assessment of multiple co-occurring air pollutants, and this constitutes a primary distinction from previous studies of population exposure assessment, where different exposure factors and activity patterns would be used for different pollutants. Future work will focus on incorporating the effects of commuting patterns on population exposure/dose assessments as well as on extending the MENTOR/SHEDS applications to seasonal/annual studies and to other areas in the U.S.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Humanos , Modelos Teóricos , Oxidantes Fotoquímicos/análise , Ozônio/análise , Tamanho da Partícula , Philadelphia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA