Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 556, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976362

RESUMO

Preclinical breast tumor models are an invaluable tool to systematically study tumor progression and treatment response, yet methods to non-invasively monitor the involved molecular and mechanistic properties under physiologically relevant conditions are limited. Here we present an intravital mesoscopic fluorescence molecular tomography (henceforth IFT) approach that is capable of tracking fluorescently labeled tumor cells in a quantitative manner inside the mammary gland of living mice. Our mesoscopic approach is entirely non-invasive and thus permits prolonged observational periods of several months. The relatively high sensitivity and spatial resolution further enable inferring the overall number of oncogene-expressing tumor cells as well as their tumor volume over the entire cycle from early tumor growth to residual disease following the treatment phase. Our IFT approach is a promising method for studying tumor growth dynamics in a quantitative and longitudinal fashion in-vivo.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Microscopia Intravital/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Fluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tomografia/métodos , Carga Tumoral/fisiologia
2.
Sci Adv ; 6(10): eaay7513, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181351

RESUMO

Glioblastoma multiforme (GBM) is a lethal type of brain tumor that often develop therapeutic resistance over months of chemotherapy cycles. Recently, 3D GBM models were developed to facilitate evaluation of drug treatment before undergoing expensive animal studies. However, for long-term evaluation of therapeutic efficacy, novel approaches for GBM tissue construction are still needed. Moreover, there is still a need to develop fast and sensitive imaging methods for the noninvasive assessment of this 3D constructs and their response to drug treatment. Here, we report on the development of an integrated platform that enable generating (i) an in vitro 3D GBM model with perfused vascular channels that allows long-term culture and drug delivery and (ii) a 3D imaging modality that enables researchers to noninvasively assess longitudinal fluorescent signals over the whole in vitro model.


Assuntos
Neoplasias Encefálicas , Técnicas de Cultura de Células , Proliferação de Células , Glioblastoma , Imageamento Tridimensional , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos
3.
Acad Radiol ; 21(2): 271-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24439340

RESUMO

RATIONALE AND OBJECTIVES: Photodynamic therapy (PDT) is a promising strategy for treating cancer. PDT involves three components: a photosensitizer (PS) drug, a specific wavelength of drug-activating light, and oxygen. A challenge in PDT is the unknown biodistribution of the PS in the target tissue. In this preliminary study, we report the development of a new approach to image in three dimensions the PS biodistribution in a noninvasive and fast manner. MATERIALS AND METHODS: A mesoscopic fluorescence tomography imaging platform was used to image noninvasively the biodistribution of 2-[1-hexyloxyethyl]-2 devinyl pyropheophorbide-a (HPPH) in preclinical skin cancer models. Seven tumors were imaged and optical reconstructions were compared to nonconcurrent ultrasound data. RESULTS: Successful imaging of the HPPH biodistribution was achieved on seven skin cancer tumors in preclinical models with a typical acquisition time of 1 minute. Two-dimensional fluorescence signals and estimated three-dimensional PS distributions were located within the lesions. However, HPPH distribution was highly heterogeneous with the tumors. Moreover, HPPH distribution volume and tumor volume as estimated by ultrasound did not match. CONCLUSIONS: The results of this proof-of-concept study demonstrate the potential of MFMT to image rapidly the HPPH three-dimensional biodistribution in skin cancers. In addition, these preliminary data indicate that the PS biodistribution in skin cancer tumors is heterogeneous and does not match anatomical data. Mesoscopic fluorescence molecular tomography, by imaging fluorescence signals over large areas with high spatial sampling and at fast acquisition speeds, may be a new imaging modality of choice for planning and optimizing of PDT treatment.


Assuntos
Carcinoma Basocelular/metabolismo , Clorofila/análogos & derivados , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Neoplasias Cutâneas/metabolismo , Espectrometria de Fluorescência/métodos , Administração Tópica , Animais , Carcinoma Basocelular/patologia , Clorofila/administração & dosagem , Clorofila/farmacocinética , Dermoscopia/métodos , Camundongos , Camundongos Transgênicos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Absorção Cutânea , Neoplasias Cutâneas/patologia , Distribuição Tecidual , Tomografia Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA