Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 896: 166223, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37586531

RESUMO

Marine debris pollution poses a significant global threat to biodiversity, with plastics being the primary debris type found in oceans due to their low-cost production and high demand worldwide. Microplastics (MPs, <5 mm in size) are highly bioavailable to a wide range of marine taxa, including marine mammals, through direct and indirect ingestion routes (i.e., trophic transfer). Recently, MP pollution has been detected on the Galapagos Marine Reserve, so in this study we developed a baseline framework for MP pollution in the Galapagos sea lion (GSL, Zalophus wollebaeki) through scat-based analysis. We collected 180 GSL scat samples from the southeast region following strict quality assurance/quality control protocols to detect, quantify and characterize physical-chemical properties of MPs through visual observations and µFT-IR spectroscopy. We recovered 81 MPs of varying sizes and colors in 37 % of samples (n = 66/180), consisting mostly of fibers (69 %, x¯ = 0.31 ± 0.57 particles scat-1). The number of particles per gram of sample wet weight ranged from 0.02 to 0.22 (x¯ = 0.04 ± 0.05 particles scat wet g-1). El Malecón and Punta Pitt rookeries at San Cristobal Island had the highest number of MPs (x¯ = 0.67 ± 0.51 and 0.43 ± 0.41 particles scat-1, respectively), and blue-colored particles were the most common in all samples. We identified eleven polymers in 46 particles, consisting mostly of polypropylene-polyethylene copolymer, polypropylene, cellulose, polyethylene, and polyvinyl chloride. The textile, fishing, and packaging industries are likely significant sources of microfibers into this insular ecosystem. Our results suggest that the GSL is exposed to MPs due to anthropogenic contamination that is subsequently transferred through trophic processes. These findings provide an important baseline framework and insights for future research on MP pollution in the region, as well as for management actions that will contribute to the long-term conservation of the GSL.


Assuntos
Leões-Marinhos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Polipropilenos/análise , Polímeros , Polietilenos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Syst Biol ; 70(4): 786-802, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33367817

RESUMO

The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here, we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 and 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be nonmonophyletic, with California (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Zalophus wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family. [Hybridization; ILS; phylogenomics; Pleistocene; Pliocene; monophyly.].


Assuntos
Substâncias Explosivas , Otárias , Leões-Marinhos , Animais , Sequência de Bases , Otárias/genética , Filogenia , Leões-Marinhos/genética
3.
J Zoo Wildl Med ; 49(3): 581-590, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30212353

RESUMO

The Galapagos sea lion ( Zalophus wollebaeki) is an otariid species endemic to the Galapagos archipelago and is currently listed as endangered. The ocular trematode Philophthalmus zalophi was recently reported to affect the survival of juvenile Galapagos sea lions on Santa Cruz Island, resulting in marked ophthalmic changes. This study evaluated the ophthalmic disease and histopathologic effects of P. zalophi on juvenile Galapagos sea lions in the largest rookery located on San Cristóbal Island. Twenty juvenile Galapagos sea lions (10 male and 10 female) were evaluated among five sites in the rookery El Malecón. Ophthalmic examination, including fluorescein staining and evaluation of the adnexa, cornea, and sclera, were performed on each eye. The presence, number, and location of ocular parasites were determined, and parasites were collected for identification. Conjunctival biopsy was performed on 11 animals: 2 that lacked parasites and gross lesions and 9 with both parasites and gross lesions. All parasites collected were confirmed as P. zalophi and identified in 80% (16/20) of the study animals and 70% (28/40) of the examined eyes. Philophthalmus zalophi was most frequently found attached to the nictitating membrane but also located on the palpebral conjunctiva or cornea. The most common clinical signs were varying degrees of conjunctival hyperemia (28/40 eyes), most frequently of the nictitating membrane and mucoid ocular discharge (12/40 eyes). The number of parasites was significantly associated with the degree of conjunctival hyperemia ( P < 0.001). Histopathology of conjunctival biopsies revealed organized lymphoid follicles and lymphoplasmacytic infiltrates. The histopathologic changes and gross lesions were likely due to the parasite's attachment to the conjunctiva. This study provides additional details of P. zalophi infection in juvenile Galapagos sea lions. Further research is warranted to detail the life cycle of this parasite, transmission to sea lions, and potential treatment protocols.


Assuntos
Oftalmopatias/veterinária , Leões-Marinhos/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Envelhecimento , Animais , Equador/epidemiologia , Oftalmopatias/epidemiologia , Oftalmopatias/parasitologia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA