Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Rep ; 13(1): 11588, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463949

RESUMO

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare neuroendocrine tumors. PGLs can further be divided into sympathetic (sPGLs) and head-and-neck (HN-PGLs). There are virtually no treatment options, and no cure, for metastatic PCCs and PGLs (PPGLs). Here, we composed a tissue microarray (TMA) consisting of 149 PPGLs, reflecting clinical features, presenting as a useful resource. Mutations in the pseudohypoxic marker HIF-2α correlate to an aggressive tumor phenotype. We show that HIF-2α localized to the cytoplasm in PPGLs. This subcompartmentalized protein expression differed between tumor subtypes, and strongly correlated to proliferation. Half of all sPGLs were metastatic at time of diagnosis. Cytoplasmic HIF-2α was strongly expressed in metastatic sPGLs and predicted poor outcome in this subgroup. We propose that higher cytoplasmic HIF-2α expression could serve as a useful clinical marker to differentiate paragangliomas from pheochromocytomas, and may help predict outcome in sPGL patients.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Neoplasias do Sistema Nervoso Periférico , Feocromocitoma , Humanos , Neoplasias das Glândulas Suprarrenais/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citoplasma/metabolismo , Paraganglioma/diagnóstico , Paraganglioma/genética , Paraganglioma/patologia , Feocromocitoma/genética
2.
Sci Transl Med ; 12(562)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967973

RESUMO

Neuroblastoma is a childhood malignancy with often dismal prognosis; relapse is common despite intense treatment. Here, we used human tumor organoids representing multiple MYCN-amplified high-risk neuroblastomas to perform a high-throughput drug screen with approved or emerging oncology drugs. Tumor-selective effects were calculated using drug sensitivity scores. Several drugs with previously unreported anti-neuroblastoma effects were identified by stringent selection criteria. ARRY-520, an inhibitor of kinesin spindle protein (KSP), was among those causing reduced viability. High expression of the KSP-encoding gene KIF11 was associated with poor outcome in neuroblastoma. Genome-scale loss-of-function screens in hundreds of human cancer cell lines across 22 tumor types revealed that KIF11 is particularly important for neuroblastoma cell viability. KSP inhibition in neuroblastoma patient-derived xenograft (PDX) cells resulted in the formation of abnormal monoastral spindles, mitotic arrest, up-regulation of mitosis-associated genes, and apoptosis. In vivo, KSP inhibition caused regression of MYCN-amplified neuroblastoma PDX tumors. Furthermore, treatment of mice harboring orthotopic neuroblastoma PDX tumors resulted in increased survival. Our results suggested that KSP inhibition could be a promising treatment strategy in children with high-risk neuroblastoma.


Assuntos
Cinesinas , Neuroblastoma , Animais , Apoptose , Linhagem Celular Tumoral , Cinesinas/genética , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico
3.
Exp Cell Res ; 390(1): 111932, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32145253

RESUMO

Patients with estrogen receptor α positive (ERα+) breast cancer can respond to endocrine therapy, but treatment resistance is common and associated with downregulation of ERα expression in the dormant residual cells. Here we show, using long-term NSG xenograft models of human breast cancer and primary human monocytes, in vitro primary cell cultures and tumors from breast cancer patients, that macrophage derived tumor necrosis factor alpha (TNFα) downregulates ERα in breast cancer cells via inactivation of the transcription factor Forkhead box O transcription factor 3a (FOXO3a). Moreover, presence of tumor associated macrophages in the primary tumor of breast cancer patients, was associated with ERα negativity, and with worse prognosis in patients with ERα+ tumors. We propose that pro-inflammatory macrophages, despite being tumoricidal, may have direct effects on tumor progression and endocrine resistance in breast cancer patients. Our findings suggest that TNFα antagonists should be evaluated for treatment of ERα+ breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Proteína Forkhead Box O3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Neoplasias da Mama/genética , Células Cultivadas , Regulação para Baixo , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Macrófagos/citologia , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Células Precursoras de Monócitos e Macrófagos/citologia , Células Precursoras de Monócitos e Macrófagos/metabolismo , Células Precursoras de Monócitos e Macrófagos/transplante
4.
Nat Commun ; 11(1): 71, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900415

RESUMO

Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.


Assuntos
Antineoplásicos/administração & dosagem , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
5.
Exp Cell Res ; 388(2): 111845, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31945318

RESUMO

BACKGROUND: Hypoxia-inducible factor (HIF)-2α associates with poor outcome in neuroblastoma and glioblastoma, and gain-of-function mutations in the EPAS1 gene (encoding HIF-2α) have been reported in paragangliomas and pheochromocytomas. Specific targeting of a druggable hydrophobic pocket in the HIF-2α PAS-B domain with PT2385 have demonstrated promising clinical results for clear cell renal cell carcinoma (ccRCC). Here, we investigated the effect of PT2385-mediated inhibition of ARNT dependent HIF-2 activity. METHODS: Neuroblastoma patient-derived xenograft (PDX) cells were treated with PT2385 and analyzed for HIF-2-dependent gene expression, HIF activity, HIF-2α protein localization, response to chemotherapy and orthotopic tumor growth in vivo. Two-sided student t-test was used. RESULTS: We detected high levels of HIF-2α protein in perivascular niches in neuroblastoma PDXs in vivo and at oxygenated conditions in PDX-derived cell cultures in vitro, particularly in the cytoplasmic fraction. Nuclear HIF-2α expression was reduced following PT2385 treatment, but surprisingly, virtually no effects on tumor growth in vivo or expression of canonical HIF downstream target genes in vitro were observed. In coherence, RNA sequencing of PT2385-treated PDX cells revealed a virtually unaffected transcriptome. Treatment with PT2385 did not affect cellular response to chemotherapy. In contrast, HIF-2α protein knockdown resulted in profound downregulation of target genes. CONCLUSIONS: The lack of effect from PT2385 treatment in combination with high cytoplasmic HIF-2α expression at normoxia suggest that HIF-2α have additional roles than acting as an ARNT dependent transcription factor. It is important to further unravel the conditions at which HIF-2α has transcriptional and non-transcriptional roles in neuroblastoma.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indanos/farmacologia , Neuroblastoma/patologia , Sulfonas/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Apoptose , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/genética , Neuroblastoma/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncogene ; 38(15): 2690-2705, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30538293

RESUMO

ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential. We show that mutant ALK downregulates the 'HMG-box transcription factor 1' (HBP1) through the PI3K-AKT-FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 itself is under negative control of MYCN through miR-17~92. Combined targeting of HBP1 by PI3K antagonists and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly reduces tumor growth, suggesting a novel targeted therapy option for high-risk neuroblastoma.


Assuntos
Quinase do Linfoma Anaplásico/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , MicroRNAs/genética , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Ativação Transcricional/genética
7.
Cancer Res ; 78(20): 5958-5969, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30154149

RESUMO

Patient-derived xenografts (PDX) and the Avatar, a single PDX mirroring an individual patient, are emerging tools in preclinical cancer research. However, the consequences of intratumor heterogeneity for PDX modeling of biomarkers, target identification, and treatment decisions remain underexplored. In this study, we undertook serial passaging and comprehensive molecular analysis of neuroblastoma orthotopic PDXs, which revealed strong intrinsic genetic, transcriptional, and phenotypic stability for more than 2 years. The PDXs showed preserved neuroblastoma-associated gene signatures that correlated with poor clinical outcome in a large cohort of patients with neuroblastoma. Furthermore, we captured spatial intratumor heterogeneity using ten PDXs from a single high-risk patient tumor. We observed diverse growth rates, transcriptional, proteomic, and phosphoproteomic profiles. PDX-derived transcriptional profiles were associated with diverse clinical characteristics in patients with high-risk neuroblastoma. These data suggest that high-risk neuroblastoma contains elements of both temporal stability and spatial intratumor heterogeneity, the latter of which complicates clinical translation of personalized PDX-Avatar studies into preclinical cancer research.Significance: These findings underpin the complexity of PDX modeling as a means to advance translational applications against neuroblastoma. Cancer Res; 78(20); 5958-69. ©2018 AACR.


Assuntos
Estadiamento de Neoplasias , Transplante de Neoplasias , Neuroblastoma/terapia , Animais , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Lactente , Masculino , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único , Proteômica , Transcriptoma , Pesquisa Translacional Biomédica
8.
Biochem Biophys Res Commun ; 499(2): 291-298, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577908

RESUMO

Presence of perivascular neuroblastoma cells with high expression of hypoxia inducible factor (HIF)-2α correlates with distant metastasis and aggressive disease. Regulation of HIFs are traditionally considered to occur post-translationally, but we have recently shown that HIF-2α is unconventionally regulated also at the transcriptional level in neuroblastoma cells. Regulatory factors binding directly to EPAS1 (encoding HIF-2α) to promote transcription are yet to be defined. Here, we employ the novel CRISPR/Cas9-based engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) - mass spectrometry (MS) methodology to, in an unbiased fashion, identify proteins that associate with the EPAS1 promoter under normoxic and hypoxic conditions. Our enChIP analysis resulted in 27 proteins binding to the EPAS1 promoter in neuroblastoma cells. In agreement with a general hypoxia-driven downregulation of gene transcription, the majority (24 out of 27) of proteins dissociate from the promoter at hypoxia. Among them were several nucleosome-associated proteins suggesting a general opening of chromatin as one explanation to induced EPAS1 transcription at hypoxia. Of particular interest from the list of released factors at hypoxia was the highly divergent homeobox (HDX) transcription factor, that we show inversely correlates with HIF-2α in neuroblastoma cells. We propose a putative model where HDX negatively regulates EPAS1 expression through a release-of-inhibition mechanism.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunoprecipitação da Cromatina/métodos , DNA/metabolismo , Engenharia Genética , Proteínas de Homeodomínio/metabolismo , Espectrometria de Massas/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
9.
Nat Ecol Evol ; 2(2): 220-228, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348641

RESUMO

Animal diversification on Earth has long been presumed to be associated with the increasing extent of oxic niches. Here, we challenge that view. We start with the fact that hypoxia (<1-3% O2) maintains cellular immaturity (stemness), whereas adult stem cells continuously-and paradoxically-regenerate animal tissue in oxygenated settings. Novel insights from tumour biology illuminate how cell stemness nevertheless can be achieved through the action of oxygen-sensing transcription factors in oxygenated, regenerating tissue. We suggest that these hypoxia-inducible transcription factors provided animals with unprecedented control over cell stemness that allowed them to cope with fluctuating oxygen concentrations. Thus, a refinement of the cellular hypoxia-response machinery enabled cell stemness at oxic conditions and, then, animals to evolve into the oxic realm. This view on the onset of animal diversification is consistent with geological evidence and provides a new perspective on the challenges and evolution of multicellular life.


Assuntos
Evolução Biológica , Hipóxia Celular/fisiologia , Oxigênio/fisiologia , Células-Tronco/fisiologia , Anaerobiose , Animais
10.
Cell Tissue Res ; 372(2): 269-275, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29032465

RESUMO

Hypoxia (i.e., low oxygen levels) is a known feature of aggressive tumors. Cells, including tumor cells, respond to conditions of insufficient oxygen by activating a transcriptional program mainly driven by hypoxia-inducible factors (HIF)-1 and HIF-2. Both HIF-1α and HIF-2α expression levels have been shown to correlate to patient outcome in various tumor forms and in neuroblastoma, a solid childhood tumor of the sympathetic nervous system, in particular, HIF-2α marks a subpopulation of immature neural crest-like perivascularly located cells and associates with aggressive disease and distant metastasis. It has for long been recognized that the HIF-α subunits are oxygen-dependently regulated at the post-translational level, via ubiquitination and proteasomal degradation. Evidence of oxygen-independent mechanisms of regulation, transcriptional control of EPAS1/HIF2A and possible cytoplasmic activities of HIF-2α has also emerged during recent years. In this review, we discuss these non-conventional actions of HIF-2α, its putative role as a therapeutic target and the constraints it carries, as well as the importance of HIF-2 activity in a vascularized setting, the so-called pseudo-hypoxic state.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Animais , Hipóxia Celular , Humanos , Neovascularização Patológica/metabolismo , Neuroblastoma/irrigação sanguínea , Neuroblastoma/genética , Oxigênio/metabolismo , Resultado do Tratamento
12.
Sci Rep ; 7(1): 10274, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860499

RESUMO

Cultured cancer cells serve as important models for preclinical testing of anti-cancer compounds. However, the optimal conditions for retaining original tumor features during in vitro culturing of cancer cells have not been investigated in detail. Here we show that serum-free conditions are critical for maintaining an immature phenotype of neuroblastoma cells isolated from orthotopic patient-derived xenografts (PDXs). PDX cells could be grown either as spheres or adherent on laminin in serum-free conditions with retained patient-specific genomic aberrations as well as tumorigenic and metastatic capabilities. However, addition of serum led to morphological changes, neuronal differentiation and reduced cell proliferation. The epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were central for PDX cell proliferation and MYCN expression, and also hindered the serum-induced differentiation. Although serum induced a robust expression of neurotrophin receptors, stimulation with their cognate ligands did not induce further sympathetic differentiation, which likely reflects a block in PDX cell differentiation capacity coupled to their tumor genotype. Finally, PDX cells cultured as spheres or adherent on laminin responded similarly to various cytotoxic drugs, suggesting that both conditions are suitable in vitro screening models for neuroblastoma-targeting compounds.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroblastoma/etiologia , Neuroblastoma/patologia , Animais , Biomarcadores Tumorais , Biópsia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Metástase Neoplásica
13.
Oncotarget ; 8(30): 48983-48995, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28430666

RESUMO

We previously demonstrated that small cell lung carcinoma (SCLC) cells lack HIF-2α protein expression, whereas HIF-1α in these cells is expressed at both acute and prolonged hypoxia. Here we show that low HIF2A expression correlates with high expression of MYC genes. Knockdown of HIF1A expression had no or limited effect on cell survival and growth in vitro. Unexpectedly, hypoxic ATP levels were not affected by HIF-1α knockdown and SCLC cell viability did not decrease upon glucose deprivation. In line with these in vitro data, xenograft tumor-take and growth were not significantly affected by repressed HIF1A expression. Glutamine withdrawal drastically decreased SCLC cell proliferation and increased cell death at normoxia and hypoxia in a HIF-independent fashion and the dependence on glutaminolysis was linked to amplification of either MYC or MYCL. Downregulation of GLS expression, regulating the first step of the glutaminolysis pathway, in MYC/MYCL overexpressing SCLC cells resulted in both impaired growth and increased cell death. Our results suggest that MYC/MYCL overexpression in SCLC cells overrides the need of HIF-1 activity in response to hypoxia by inducing glutaminolysis and lipogenesis. Targeting the glutaminolysis pathway might hence be a novel approach to selectively kill MYC amplified SCLC cells in vivo.


Assuntos
Genes myc , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Amplificação de Genes , Expressão Gênica , Técnicas de Silenciamento de Genes , Glutamina/metabolismo , Glicólise , Xenoenxertos , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Modelos Biológicos
14.
Exp Cell Res ; 356(2): 192-196, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284840

RESUMO

Tumor hypoxia correlates to aggressive disease, and while this is explained by a variety of factors, one clue to understand this phenomena was the finding that hypoxia induces a de-differentiated, stem cell-like phenotype in neuroblastoma and breast tumor cells. The hypoxia inducible transcription factors (HIFs) are regulated at the translational level by fluctuating oxygen concentrations, but emerging data reveal that both HIF-1α and HIF-2α expression can be induced by aberrantly activated growth factor signaling independently of oxygen levels. Furthermore, HIF-2α is regulated by hypoxia also at the transcriptional level in neuroblastoma and glioma cells. In cultured tumor cells, HIF-2α is stabilized at physiological oxygen concentrations followed by induced expression of classical hypoxia-driven genes, resulting in a pseudohypoxic phenotype. In addition, in neuroblastoma and glioma specimens, a small subset of HIF-2α positive, HIF-1α negative, tumor cells is found adjacent to blood vessels, i.e. in areas with presumably adequate oxygenation. These tumor niches are thus pseudohypoxic, and the HIF-2α expressing cells present immature features. We have postulated that this niche in neuroblastomas encompass the tumor stem cells. Oncogenes or tumor suppressor genes associated with pseudohypoxia are frequently mutated or deleted in the germline, implicating that the pseudohypoxic phenotype indeed is tumorigenic. In summary, the hypoxic and pseudohypoxic phenotypes of solid tumors are attractive therapeutic targets.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Hipóxia/metabolismo , Neuroblastoma/metabolismo , Animais , Humanos
15.
Nat Commun ; 7: 13050, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725631

RESUMO

Triple-negative (TN) breast cancers (ER-PR-HER2-) are highly metastatic and associated with poor prognosis. Within this subtype, invasive, stroma-rich tumours with infiltration of inflammatory cells are even more aggressive. The effect of myeloid cells on reactive stroma formation in TN breast cancer is largely unknown. Here, we show that primary human monocytes have a survival advantage, proliferate in vivo and develop into immunosuppressive myeloid cells expressing the myeloid-derived suppressor cell marker S100A9 only in a TN breast cancer environment. This results in activation of cancer-associated fibroblasts and expression of CXCL16, which we show to be a monocyte chemoattractant. We propose that this migratory feedback loop amplifies the formation of a reactive stroma, contributing to the aggressive phenotype of TN breast tumours. These insights could help select more suitable therapies targeting the stromal component of these tumours, and could aid prediction of drug resistance.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Quimiocina CXCL16/metabolismo , Fatores Quimiotáticos/farmacologia , Monócitos/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Colágeno/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Imunossupressão , Camundongos Nus , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Solubilidade , Células Estromais/patologia , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Br J Cancer ; 115(4): 480-9, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27415013

RESUMO

BACKGROUND: Although survival for neuroblastoma patients has dramatically improved in recent years, a substantial number of children in the high-risk subgroup still die. METHODS: We aimed to define a subgroup of ultra-high-risk patients from within the high-risk cohort. We used advanced morphometric approaches to quantify and characterise blood vessels, reticulin fibre networks, collagen type I bundles, elastic fibres and glycosaminoglycans in 102 high-risk neuroblastomas specimens. The Kaplan-Meier method was used to correlate the analysed elements with survival. RESULTS: The organisation of blood vessels and reticulin fibres in neuroblastic tumours defined an ultra-high-risk patient subgroup with 5-year survival rate <15%. Specifically, tumours with irregularly shaped blood vessels, large sinusoid-like vessels, smaller and tortuous venules and arterioles and with large areas of reticulin fibres forming large, crosslinking, branching and haphazardly arranged networks were linked to the ultra-high-risk phenotype. CONCLUSIONS: We demonstrate that quantification of tumour stroma components by morphometric techniques has the potential to improve risk stratification of neuroblastoma patients.


Assuntos
Neoplasias Encefálicas/patologia , Matriz Extracelular/patologia , Neuroblastoma/patologia , Vasos Sanguíneos/patologia , Neoplasias Encefálicas/mortalidade , Colágeno Tipo I/metabolismo , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Lactente , Estimativa de Kaplan-Meier , Neuroblastoma/metabolismo , Neuroblastoma/mortalidade , Prognóstico , Reticulina/metabolismo , Risco , Medição de Risco , Taxa de Sobrevida
17.
Pharmacol Ther ; 164: 152-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27139518

RESUMO

Insufficient tissue oxygenation, or hypoxia, contributes to tumor aggressiveness and has a profound impact on clinical outcomes in cancer patients. At decreased oxygen tensions, hypoxia-inducible factors (HIFs) 1 and 2 are stabilized and mediate a hypoxic response, primarily by acting as transcription factors. HIFs exert differential effects on tumor growth and affect important cancer hallmarks including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune responses, and invasion and metastasis. As a consequence, HIFs mediate resistance to chemo- and radiotherapy and are associated with poor prognosis in cancer patients. Intriguingly, perivascular tumor cells can also express HIF-2α, thereby forming a "pseudohypoxic" phenotype that further contributes to tumor aggressiveness. Therefore, therapeutic targeting of HIFs in cancer has the potential to improve treatment efficacy. Different strategies to target hypoxic cancer cells and/or HIFs include hypoxia-activated prodrugs and inhibition of HIF dimerization, mRNA or protein expression, DNA binding capacity, and transcriptional activity. Here we review the functions of HIFs in the progression and treatment of malignant solid tumors. We also highlight how HIFs may be targeted to improve the management of patients with therapy-resistant and metastatic cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/fisiologia , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/fisiopatologia , Apoptose/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neovascularização Patológica/fisiopatologia , Pró-Fármacos/farmacologia , RNA Mensageiro/biossíntese , Ativação Transcricional
18.
Cancer Lett ; 375(2): 384-389, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27000989

RESUMO

Treatment of high-risk childhood neuroblastoma is a clinical challenge which has been hampered by a lack of reliable neuroblastoma mouse models for preclinical drug testing. We have previously established invasive and metastasising patient-derived orthotopic xenografts (PDXs) from high-risk neuroblastomas that retained the genotypes and phenotypes of patient tumours. Given the important role of the tumour microenvironment in tumour progression, metastasis, and treatment responses, here we analysed the tumour microenvironment of five neuroblastoma PDXs in detail. The PDXs resembled their parent tumours and retained important stromal hallmarks of aggressive lesions including rich blood and lymphatic vascularisation, pericyte coverage, high numbers of cancer-associated fibroblasts, tumour-associated macrophages, and extracellular matrix components. Patient-derived tumour endothelial cells occasionally formed blood vessels in PDXs; however, tumour stroma was, overall, of murine origin. Lymphoid cells and lymphatic endothelial cells were found in athymic nude mice but not in NSG mice; thus, the choice of mouse strain dictates tumour microenvironmental components. The murine tumour microenvironment of orthotopic neuroblastoma PDXs reflects important hallmarks of aggressive and metastatic clinical neuroblastomas. Neuroblastoma PDXs are clinically relevant models for preclinical drug testing.


Assuntos
Vasos Sanguíneos/patologia , Neovascularização Patológica/genética , Neuroblastoma/genética , Microambiente Tumoral/genética , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Neovascularização Patológica/patologia , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 7(10): 11238-50, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26849233

RESUMO

The majority of breast cancers express estrogen receptor α (ERα), and most patients with ERα-positive breast cancer benefit from antiestrogen therapy. The ERα-modulator tamoxifen and ERα-downregulator fulvestrant are commonly employed antiestrogens. Antiestrogen resistance remains a clinical challenge, with few effective treatments available for patients with antiestrogen-resistant breast cancer. Hypoxia, which is intrinsic to most tumors, promotes aggressive disease, with the hypoxia-inducible transcription factors HIF1 and HIF2 regulating cellular responses to hypoxia. Here, we show that the ERα-expressing breast cancer cells MCF-7, CAMA-1, and T47D are less sensitive to antiestrogens when hypoxic. Furthermore, protein and mRNA levels of HIF2α/HIF2A were increased in a panel of antiestrogen-resistant cells, and antiestrogen-exposure further increased HIF2α expression. Ectopic expression of HIF2α in MCF-7 cells significantly decreased sensitivity to antiestrogens, further implicating HIF2α in antiestrogen resistance. EGFR is known to contribute to antiestrogen resistance: we further show that HIF2α drives hypoxic induction of EGFR and that EGFR induces HIF2α expression. Downregulation or inhibition of EGFR led to decreased HIF2α levels. This positive and bilateral HIF2-EGFR regulatory crosstalk promotes antiestrogen resistance and, where intrinsic hypoxic resistance exists, therapy itself may exacerbate the problem. Finally, inhibition of HIFs by FM19G11 restores antiestrogen sensitivity in resistant cells. Targeting HIF2 may be useful for counteracting antiestrogen resistance in the clinic.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia
20.
Cancer Res ; 75(21): 4617-28, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432405

RESUMO

Hypoxia-inducible factor (HIF) is a master regulator of cellular responses to oxygen deprival with a critical role in mediating the angiogenic switch in solid tumors. Differential expression of the HIF subunits HIF1α and HIF2α occurs in many human tumor types, suggesting selective implications to biologic context. For example, high expression of HIF2α that occurs in neuroblastoma is associated with stem cell-like features, disseminated disease, and poor clinical outcomes, suggesting pivotal significance for HIF2 control in neuroblastoma biology. In this study, we provide novel insights into how HIF2α expression is transcriptionally controlled by hypoxia and how this control is abrogated by inhibition of insulin-like growth factor-1R/INSR-driven phosphoinositide 3-kinase (PI3K) signaling. Reducing PI3K activity was sufficient to decrease HIF2α mRNA and protein expression in a manner with smaller and less vascularized tumors in vivo. PI3K-regulated HIF2A mRNA expression was independent of Akt or mTORC1 signaling but relied upon mTORC2 signaling. HIF2A mRNA was induced by hypoxia in neuroblastoma cells isolated from metastatic patient-derived tumor xenografts, where HIF2A levels could be reduced by treatment with PI3K and mTORC2 inhibitors. Our results suggest that targeting PI3K and mTORC2 in aggressive neuroblastomas with an immature phenotype may improve therapeutic efficacy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Complexos Multiproteicos/metabolismo , Neovascularização Patológica/genética , Neuroblastoma/irrigação sanguínea , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Nus , Neovascularização Patológica/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Receptor IGF Tipo 1 , Receptor IGF Tipo 2/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais/fisiologia , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA