Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409343, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012328

RESUMO

We present here the most active synthetic Ni superoxide dismutase (NiSOD) mimic reported to date. Reactive oxygen species are aggressive compounds, which concentrations are tightly regulated in vivo. Among them, the superoxide anion, O2⸱-, is controlled by superoxide dismutases. Capitalizing on the versatility of the Amino-Terminal CuII- and NiII-binding (ATCUN) peptide motif, we introduced positive charges around the NiII center to favor the interaction with the superoxide radical anion. At physiological pH, the pentapeptide H-Cys-His-Cys-Arg-Arg-NH2 coordinates NiII after the deprotonation of one thiol, two amides, and either the second thiol or the N-terminal ammonium, leading to an equilibrium between the two N3S1 and N2S2 coordination modes. Under catalytic conditions, a kcat value of 8.6(4) x 106 L.mol-1.s-1 was measured. Within the first second, the catalyst remained undegraded with quantitative consumption of O2⸱- (completed up to 37 catalytic cycles). An extra arginine (Arg) was introduced at the peptide C-terminus to increase the global charge of the NiII complex from +1 to + 2. This had no effect on the catalytic performance, highlighting the critical role of charge distribution in space as a determining factor influencing the reactivity.

2.
J Mater Chem C Mater ; 11(24): 8161-8169, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362026

RESUMO

We present the simple synthesis of a star-shape non-fullerene acceptor (NFA) for application in organic solar cells. This NFA possesses a D(A)3 structure in which the electron-donating core is an aza-triangulene unit and we report the first crystal structure for a star shape NFA based on this motive. We fully characterized this molecule's optoelectronic properties in solution and thin films, investigating its photovoltaic properties when blended with PTB7-Th as the electron donor component. We demonstrate that the aza-triangulene core leads to a strong absorption in the visible range with an absorption edge going from 700 nm in solution to above 850 nm in the solid state. The transport properties of the pristine molecule were investigated in field effect transistors (OFETs) and in blends with PTB7-Th following a Space-Charge-Limited Current (SCLC) protocol. We found that the mobility of electrons measured in films deposited from o-xylene and chlorobenzene are quite similar (up to 2.70 × 10-4 cm2 V-1 s-1) and that the values are not significantly modified by thermal annealing. The new NFA combined with PTB7-Th in the active layer of inverted solar cells leads to a power conversion efficiency of around 6.3% (active area 0.16 cm2) when processed from non-chlorinated solvents without thermal annealing. Thanks to impedance spectroscopy measurements performed on the solar cells, we show that the charge collection efficiency of the devices is limited by the transport properties rather than by recombination kinetics. Finally, we investigated the stability of this new NFA in various conditions and show that the star-shape molecule is more resistant against photolysis in the presence and absence of oxygen than ITIC.

3.
Inorg Chem ; 61(50): 20674-20689, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475655

RESUMO

Lanthanide(III) (Ln3+) complexes feature desirable luminescence properties for cell microscopy imaging, but cytosolic delivery of Ln3+ complexes and their use for 2P imaging of live cells are challenging. In this article, we describe the synthesis and spectroscopic characterizations of a series of Ln3+ complexes based on two ligands, L1 and L2, featuring extended picolinate push-pull antennas for longer wavelength absorption and 2P absorption properties as well as a free carboxylate function for conjugation to peptides. Several cell penetrating peptide/Ln3+ complex conjugates were then prepared with the most interesting luminescent complexes, Tb(L1) and Eu(L2), and with two cell penetrating peptides (CPPs), ZF5.3 and TP2. A spectroscopic analysis demonstrates that the luminescence properties of the complexes are not affected by conjugation to the peptide. The conjugates were evaluated for one-photon (1P) time-gated microscopy imaging, which suppresses biological background fluorescence, and 2P confocal microscopy. Whereas TP2-based conjugates were unable to enter cells, successful 1P and 2P imaging was performed with ZF5.3[Tb(L1)]. 2P confocal imaging suggests proper internalization and cytosolic delivery as expected for this CPP. Noteworthy, 2P confocal microscopy also allowed characterization of the luminescence properties of the complex (spectrum, lifetime) within the cell, opening the way to functional luminescent probes for 2P confocal imaging of live cells.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Luminescência , Microscopia/métodos , Fótons , Ligantes , Peptídeos
4.
Inorg Chem ; 60(17): 12772-12780, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34416109

RESUMO

Nickel superoxide dismutase (NiSOD) is an enzyme that protects cells against O2·-. While the structure of its active site is known, the mechanism of the catalytic cycle is still not elucidated. Its active site displays a square planar NiII center with two thiolates, the terminal amine and an amidate. We report here a bioinspired NiII complex built on an ATCUN-like binding motif modulated with one cysteine, which demonstrates catalytic SOD activity in water (kcat = 8.4(2) × 105 M-1 s-1 at pH = 8.1). Its reactivity with O2·- was also studied in acetonitrile allowing trapping two different short-lived species that were characterized by electron paramagnetic resonance or spectroelectrochemistry and a combination of density functional theory (DFT) and time-dependent DFT calculations. Based on these observations, we propose that O2·- interacts first with the complex outer sphere through a H-bond with the peptide scaffold in a [NiIIO2·-] species. This first species could then evolve into a NiIII hydroperoxo inner sphere species through a reaction driven by protonation that is thermodynamically highly favored according to DFT calculations.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Superóxidos/química , Catálise , Teoria da Densidade Funcional , Modelos Químicos , Estrutura Molecular , Níquel/química , Superóxido Dismutase/química
5.
J Inorg Biochem ; 222: 111518, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182264

RESUMO

Imidazole thiones appear as interesting building blocks for Cu(I) chelation and protection against Cu-mediated oxidative stress. Therefore, a series of tripodal molecules derived from nitrilotriacetic acid appended with three imidazole thiones belonging either to histamine-like or histidine-like moieties were synthesized. These tripods demonstrate intermediate affinity between that previously measured for tripodal analogues bearing three thiol moieties such as cysteine and those grafted with three thioethers, like methionines, consistently with the thione group in the imidazole thione moiety existing as a tautomer between a thiol and a thione. The two non-alkylated tripods derived from thioimidazole, TH and TH* demonstrated three orders of magnitude larger affinity for Cu(I) (logKpH 7.4 = 14.3) than their analogues derived from N,N'-dialkylated thioimidazole TMe and TEt (logKpH 7.4 = 11-11.6). Their efficiency to inhibit Cu-mediated oxidative stress is demonstrated by several assays involving ascorbate consumption or biomolecule damages and correlates with their ability to chelate Cu(I), related to their conditional complexation constants at pH 7.4. The two non-alkylated tripods derived from thioimidazole, TH and TH* are significantly more powerful in reducing Cu-mediated oxidative stress than their analogues derived from N,N'-dialkylated thioimidazole TMe and TEt.


Assuntos
Antioxidantes/química , Quelantes/química , Complexos de Coordenação/química , Imidazóis/química , Estresse Oxidativo/efeitos dos fármacos , Tionas/química , Antioxidantes/síntese química , Ácido Ascórbico/química , Quelantes/síntese química , Complexos de Coordenação/síntese química , Cobre/química , DNA/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Imidazóis/síntese química , Ligantes , Oxirredução , Plasmídeos/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Tionas/síntese química
6.
Chemistry ; 26(59): 13476-13483, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608532

RESUMO

The interest in ratiometric luminescent probes that detect and quantify a specific analyte is growing. Owing to their special luminescence properties, lanthanide(III) cations offer attractive opportunities for the design of dual-color ratiometric probes. Here, the design principle of hetero-bis-lanthanide peptide conjugates by using native chemical ligation is described for perfect control of the localization of each lanthanide cation within the molecule. Two zinc-responsive probes, r-LZF1Tb|Cs124|Eu and r-LZF1Eu|Cs124|Tb are described on the basis of a zinc finger peptide and two DOTA (DOTA=1,4,7,10-tetraaza-cyclododecane-1,4,7,10-tetraacetic acid) complexes of terbium and europium. Both display dual-color ratiometric emission in response to the presence of Zn2+ . By using a screening approach, anthracene was identified for the sensitization of the luminescence of two near-infrared-emitting lanthanides, Yb3+ and Nd3+ . Thus, two novel zinc-responsive hetero-bis-lanthanide probes, r-LZF3Yb|Anthra|Nd and r-LZF3Nd|Anthra|Yb were assembled, the former offering a neat ratiometric response to Zn2+ with emission in the near-infrared around 1000 nm, which is unprecedented.


Assuntos
Elementos da Série dos Lantanídeos , Peptídeos/química , Európio/química , Luminescência , Térbio/química , Zinco/química
7.
J Am Chem Soc ; 142(1): 274-282, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31760743

RESUMO

[Co(bapbpy)Cl]+ (bapbpy: 6,6'-bis(2-aminopyridyl)-2,2'-bipyridine) is a polypyridyl cobalt(II) complex bearing both a redox-active bipyridine ligand and pendant proton relays. This compound catalyzes electro-assisted H2 evolution in DMF with distinct mechanisms depending on the strength of the acid used as the proton source (pKa values ranging from 3.4 to 13.5 in DMF) and the applied potential. Electrochemical studies combining cyclic voltammetry and bulk electrolysis measurements enabled one to bring out four distinct catalytic processes. Where applicable, relevant kinetic information were obtained using either foot-of-the-wave analysis (FOWA) or analytical treatment of bulk electrolysis experiments. Among the different catalytic pathways identified in this study, a clear relationship between the catalyst performances and stability was evidenced. These results draw attention to a number of interesting considerations and may help in the development of future adequately designed catalysts.

8.
Inorg Chem ; 58(19): 12775-12785, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31545024

RESUMO

The superoxide dismutase (SOD) activity of mononuclear NiII complexes, whose structures are inspired by the NiSOD, has been investigated. They have been designed with a sulfur-rich pseudopeptide ligand, derived from nitrilotriacetic acid (NTA), where the three acid functions are grafted with cysteines (L3S). Two mononuclear complexes, which exist in pH-dependent proportions, have been fully characterized by a combination of spectroscopic techniques including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations. They display similar square-planar S3O coordination, with the three thiolates of the three cysteine moieties from L3S coordinated to the NiII ion, together with either a water molecule at physiological pH, as [NiL3S(OH2)]-, or a hydroxo ion in more basic conditions, as [NiL3S(OH)]2-. The 1H NMR study has revealed that contrary to the hydroxo ligand, the bound water molecule is labile. The cyclic voltammogram of both complexes displays an irreversible one-electron oxidation process assigned to the NiII/NiIII redox system with Epa = 0.48 and 0.31 V versus SCE for NiL3S(OH2) and NiL3S(OH), respectively. The SOD activity of both complexes has been tested. On the basis of the xanthine oxidase assay, an IC50 of about 1 µM has been measured at pH 7.4, where NiL3S(OH2) is mainly present (93% of the NiII species), while the IC50 is larger than 100 µM at pH 9.6, where NiL3S(OH) is the major species (92% of the NiII species). Interestingly, only NiL3S(OH2) displays SOD activity, suggesting that the presence of a labile ligand is required. The SOD activity has been also evaluated under catalytic conditions at pH 7.75, where the ratio between NiL3S(OH2)/ NiL3S(OH) is about (86:14), and a rate constant, kcat = 1.8 × 105 M-1 s-1, has been measured. NiL3S(OH2) is thus the first low-molecular weight, synthetic, bioinspired Ni complex that displays catalytic SOD activity in water at physiological pH, although it does not contain any N-donor ligand in its first coordination sphere, as in the NiSOD. Overall, the data show that a key structural feature is the presence of a labile ligand in the coordination sphere of the NiII ion.


Assuntos
Complexos de Coordenação/química , Cisteína/química , Níquel/química , Compostos de Enxofre/química , Superóxido Dismutase/química , Materiais Biomiméticos/química , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução
9.
Nat Chem ; 8(11): 1054-1060, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27768098

RESUMO

Hydrogen production through water splitting is one of the most promising solutions for the storage of renewable energy. [NiFe] hydrogenases are organometallic enzymes containing nickel and iron centres that catalyse hydrogen evolution with performances that rival those of platinum. These enzymes provide inspiration for the design of new molecular catalysts that do not require precious metals. However, all heterodinuclear NiFe models reported so far do not reproduce the Ni-centred reactivity found at the active site of [NiFe] hydrogenases. Here, we report a structural and functional NiFe mimic that displays reactivity at the Ni site. This is shown by the detection of two catalytic intermediates that reproduce structural and electronic features of the Ni-L and Ni-R states of the enzyme during catalytic turnover. Under electrocatalytic conditions, this mimic displays high rates for H2 evolution (second-order rate constant of 2.5 × 104 M-1 s-1; turnover frequency of 250 s-1 at 10 mM H+ concentration) from mildly acidic solutions.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Hidrogênio/química , Hidrogenase/química , Níquel/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Catálise , Domínio Catalítico , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/metabolismo , Modelos Moleculares , Conformação Molecular , Oxirredução , Prótons
10.
Inorg Chem ; 55(18): 9178-86, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27251764

RESUMO

With the intention to investigate the redox properties of polynuclear complexes as previously reported for the pentamanganese complex [{Mn(II)(µ-bpp)3}2Mn(III)Mn(II)2(µ3-O)](3+) (2(3+)), we focused on the analogous pentairon complex that was previously isolated as all-ferrous. As Masaoka and co-workers recently published, aerobic synthesis leads to the [{Fe(II)(µ-bpp)3}2Fe(III)Fe(II)2(µ3-O)](3+) complex (1(3+)). This species exhibits in acetonitrile solution four reversible one-electron oxidation waves. Accordingly, the three oxidized species 1(4+), 1(5+), and 1(6+) with a 3Fe(II)2Fe(III), 2Fe(II)3Fe(III), and 1Fe(II)4Fe(III) composition, respectively, were generated by bulk electrolysis and isolated. Mössbauer spectroscopy allowed us to determine the spin states of all the iron ions and to unambiguously locate the sites of the successive oxidations. They all occur in the µ3-oxo core except for the 1(4+) to 1(5+) process that presents a striking electronic rearrangement, with both metals in axial position being oxidized while the core is reduced to the [Fe(III)Fe(II)2(µ3-O)](5+) oxidation level. This strongly differs from the redox behavior of the Mn5 system. The origin of this electronic switch is discussed.

11.
Inorg Chem ; 51(19): 10447-60, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22989001

RESUMO

The heterodinuclear complexes [Fe(III)Mn(II)(L-Bn)(µ-OAc)(2)](ClO(4))(2) (1) and [Fe(II)Mn(II)(L-Bn)(µ-OAc)(2)](ClO(4)) (2) with the unsymmetrical dinucleating ligand HL-Bn {[2-bis[(2-pyridylmethyl)aminomethyl]]-6-[benzyl-2-(pyridylmethyl)aminomethyl]-4-methylphenol} were synthesized and characterized as biologically relevant models of the new Fe/Mn class of nonheme enzymes. Crystallographic studies have been completed on compound 1 and reveal an Fe(III)Mn(II)µ-phenoxobis(µ-carboxylato) core. A single location of the Fe(III) ion in 1 and of the Fe(II) ion in 2 was demonstrated by Mössbauer and (1)H NMR spectroscopies, respectively. An investigation of the temperature dependence of the magnetic susceptibility of 1 revealed a moderate antiferromagnetic interaction (J = 20 cm(-1)) between the high-spin Fe(III) and Mn(II) ions in 1, which was confirmed by Mössbauer and electron paramagnetic resonance (EPR) studies. The electrochemical properties of complex 1 are described. A quasireversible electron transfer at -40 mV versus Ag/AgCl corresponding to the Fe(III)Mn(II)/Fe(II)Mn(II) couple appears in the cyclic voltammogram. Thorough investigations of the Mössbauer and EPR signatures of complex 2 were performed. The analysis allowed evidencing of a weak antiferromagnetic interaction (J = 5.72 cm(-1)) within the Fe(II)Mn(II) pair consistent with that deduced from magnetic susceptibility measurements (J = 6.8 cm(-1)). Owing to the similar value of the Fe(II) zero-field splitting (D(Fe) = 3.55 cm(-1)), the usual treatment within the strong exchange limit was precluded and a full analysis of the electronic structure of the ground state of complex 2 was developed. This situation is reminiscent of that found in many diiron and iron-manganese enzyme active sites.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Compostos Ferrosos/química , Manganês/química , Cresóis/química , Cristalografia por Raios X , Ferro/química , Ligantes , Modelos Moleculares , Piridinas/química
12.
Inorg Chem ; 50(8): 3707-16, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21428312

RESUMO

Sulfur-rich nickel metalloenzymes are capable of stabilizing Ni(I) and Ni(III) oxidation states in catalytically relevant species. In an effort to better understand the structural and electronic features that allow the stabilization of such species, we have investigated the electrochemical properties of two mononuclear N(2)S(2) Ni(II) complexes that differ in their sulfur environment. Complex 1 features aliphatic dithiolate coordination ([NiL], 1), and complex 2I is characterized by mixed thiolate/thioether coordination ([NiL(Me)]I, 2I). The latter results from the methylation of a single sulfur of 1. The X-ray structure of 2I reveals a distorted square planar geometry around the Ni(II) ion, similar to what was previously reported by us for 1. The electrochemical investigation of 1 and 2(+) shows that the addition of a methyl group shifts the potentials of both redox Ni(II)/Ni(I) and Ni(III)/Ni(II) redox couples by about 0.7 and 0.6 V to more positive values. Through bulk electrolyses, only the mononuclear dithiolate [Ni(I)L](-) (1(-)) and the mixed thiolate/thioether [Ni(III)L(Me)](2+) (2(2+)) complexes were generated, and their electronic properties were investigated by UV-vis and EPR spectroscopy. For 1(-) (Ni(I), d(9) configuration) the EPR data are consistent with a d(x(2))(-)(y(2)) based singly occupied molecular orbitals (SOMOs). However, DFT calculations suggest that there is also pronounced radical character. This is consistent with the small g-anisotropy observed in the EPR experiments. The spin population (Mulliken analysis) analysis of 1(-) reveals that the main contribution to the SOMO (64%) is due to the bipyridine unit. Time dependent density functional theory (TD-DFT) calculations attribute the most prominent features observed in the electronic absorption spectrum of 1(-) to metal to ligand charge transfer (MLCT) transitions. Concerning 2(2+), the EPR spectrum displays a rhombic signal with g(x) = 2.236, g(y) = 2.180, and g(z) = 2.039 in CH(3)CN. The g(iso) value is larger than 2.0, which is consistent with metal based oxidation. The unpaired electron (Ni(III), d(7) configuration) occupies a Ni-d(z(2)) based molecular orbital, consistent with DFT calculations. Nitrogen hyperfine structure is observed as a triplet in the g(z) component of the EPR spectrum with A(N) = 51 MHz. This result indicates the coordination of a CH(3)CN molecule in the axial position. DFT calculations confirm that the presence of a fifth ligand in the coordination sphere of the Ni ion is required for the metal-based oxidation process. Finally, we have shown that 1 exhibits catalytic reductive dehalogenation activity below potentials of -2.00 V versus Fc/Fc(+) in CH(2)Cl(2).


Assuntos
Níquel/química , Compostos Organometálicos/química , Teoria Quântica , Compostos de Sulfidrila/química , Sulfetos/química , Cristalografia por Raios X , Íons/química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Oxirredução
13.
Proc Natl Acad Sci U S A ; 106(49): 20627-32, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19948953

RESUMO

Hydrogen production through the reduction of water appears to be a convenient solution for the long-run storage of renewable energies. However, economically viable hydrogen production requests platinum-free catalysts, because this expensive and scarce (only 37 ppb in the Earth's crust) metal is not a sustainable resource [Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209-1214]. Here, we report on a new family of cobalt and nickel diimine-dioxime complexes as efficient and stable electrocatalysts for hydrogen evolution from acidic nonaqueous solutions with slightly lower overvoltages and much larger stabilities towards hydrolysis as compared to previously reported cobaloxime catalysts. A mechanistic study allowed us to determine that hydrogen evolution likely proceeds through a bimetallic homolytic pathway. The presence of a proton-exchanging site in the ligand, furthermore, provides an exquisite mechanism for tuning the electrocatalytic potential for hydrogen evolution of these compounds in response to variations of the acidity of the solution, a feature only reported for native hydrogenase enzymes so far.


Assuntos
Cobalto/química , Eletricidade , Hidrogênio/análise , Iminas/química , Níquel/química , Compostos Organometálicos/química , Oximas/química , Catálise , Cristalografia por Raios X , Eletroquímica , Eletrólise , Oxirredução , Prótons
14.
Chemistry ; 15(37): 9350-64, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19670195

RESUMO

The new dinuclear nickel-ruthenium complexes [Ni(xbsms)RuCp(L)][PF(6)] (H(2)xbsms = 1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene; Cp(-) = cyclopentadienyl; L = DMSO, CO, PPh(3), and PCy(3)) are reported and are bioinspired mimics of NiFe hydrogenases. These compounds were characterized by X-ray diffraction techniques and display novel structural motifs. Interestingly, [Ni(xbsms)RuCpCO][PF(6)] is stereochemically nonrigid in solution and an isomerization mechanism was derived with the help of density functional theory (DFT) calculations. Because of an increased electron density on the metal centers [Eur. J. Inorg. Chem. 2007, 18, 2613-2626] with respect to the previously described [Ni(xbsms)Ru(CO)(2)Cl(2)] and [Ni(xbsms)Ru(p-cymene)Cl](+) complexes, [Ni(xbsms)RuCp(dmso)][PF(6)] catalyzes hydrogen evolution from Et(3)NH(+) in DMF with an overpotential reduced by 180 mV and thus represents the most efficient NiFe hydrogenase functional mimic. DFT calculations were carried out with several methods to investigate the catalytic cycle and, coupled with electrochemical measurements, allowed a mechanism to be proposed. A terminal or bridging hydride derivative was identified as the active intermediate, with the structure of the bridging form similar to that of the Ni-C active state of NiFe hydrogenases.


Assuntos
Ciclopentanos/química , Hidrogênio/química , Níquel/química , Rutênio/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Hidrogenase/química , Hidrogenase/metabolismo , Conformação Molecular
15.
J Am Chem Soc ; 128(19): 6347-56, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16683799

RESUMO

Circular dichroism (CD) spectra and density functional theory (DFT) calculations are reported for a series of conformationally bistable chiroporphyrins with 8-methylene bridles MBCP-8, which can display either an alphaalphaalphaalpha or an alphabetaalphabeta orientation of their meso substituents. From DFT geometry optimizations, the most stable form of ZnBCP-8 is found to be the alphaalphaalphaalpha conformer. By passing to NiBCP-8, there is a strong stabilization of the alphabetaalphabeta conformation with respect to the alphaalphaalphaalpha conformation, consistent with the X-ray structures of alphaalphaalphaalpha-ZnBCP-8 and alphabetaalphabeta-NiBCP-8. A correlation between the sign of the CD signal in the Soret region and the conformation of the BCP-8 compounds is reported: the alphaalphaalphaalpha conformers H2BCP-8 and ZnBCP-8 show a positive CD signal, whereas the alphabetaalphabeta conformers NiBCP-8 and CuBCP-8 exhibit a negative signal. The possible contributions to the rotational strengths of alphabetaalphabeta-NiBCP-8 and alphaalphaalphaalpha-ZnBCP-8, calculated on the basis of their crystal structures, have been analyzed. The CD signals are found to result from a combination of both the inherent chirality of the porphyrin and of extrinsic contributions due to the chiral bridles. These results may have a broad significance for understanding the chiroptical properties of chiral porphyrins and hemoproteins and for monitoring stimuli-responsive, conformationally bistable chiroporphyrin compounds.

16.
Chemphyschem ; 6(3): 541-6, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15799481

RESUMO

The isolation, structural characterization, and electronic properties of two six-coordinated chloromanganese (III) complexes, [Mn(terpy)(Cl)3] (1) and [Mn(Phterpy)(Cl)3] (2), are reported (terpy = 2,2':6'2"-terpyridine, Phterpy = 4'-phenyl-2,2':6',2"-terpyridine). These complexes complement a series of mononuclear azide and fluoride Mn(lll) complexes synthesized with neutral N-tridentate ligands, [Mn(L)(X)3] (X = F- or N3 and L = terpy or bpea [N,N-bis(2-pyridylmethyl)-ethylamine)], previously described. Similar to these previous complexes, 1 and 2 exhibit a Jahn-Teller distortion of the octahedron, characteristic of a high-spin Mn(III) complex (S = 2). The analysis of the crystallographic data shows that, in both cases, the manganese ion lies in the center of a distorted octahedron characterized by an elongation along the tetragonal axis. Their electronic properties were investigated by multifrequency EPR (190-475 GHz) performed in the solid state at different temperatures (5-15 K). This study confirms our previous results and further shows that: i) the sign of D is correlated with the nature of the tetragonal distortion; ii) the magnitude of D is not sensitive to the nature of the anions in our series of rhombic complexes, contrary to the porphyrinic systems; iii) the [E/D] values (0.124 for 1 and 0.085 for 2) are smaller compared to those found for the [Mn(L)(X)3] complexes (in the range of 0.146 to 0.234); and iv) the E term increases when the ligand-field strength of the equatorial ligands decreases.


Assuntos
Cloro/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Manganês/química , Ânions , Biofísica/métodos , Fenômenos Químicos , Físico-Química , Cristalografia por Raios X , Elétrons , Fluoretos/química , Ligação de Hidrogênio , Íons , Ligantes , Compostos de Manganês/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Temperatura
17.
J Am Chem Soc ; 127(4): 1179-92, 2005 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-15669857

RESUMO

The effects of ruffling on the axial ligation properties of a series of nickel(II) tetra(alkyl)porphyrins have been investigated with UV-visible absorption spectroscopy, resonance Raman spectroscopy, X-ray crystallography, classical molecular mechanics calculations, and normal-coordinate structural decomposition analysis. For the modestly nonplanar porphyrins, porphyrin ruffling is found to cause a decrease in binding affinity for pyrrolidine and piperidine, mainly caused by a decrease in the binding constant for addition of the first axial ligand; ligand binding is completely inhibited for the more nonplanar porphyrins. The lowered affinity, resulting from the large energies required to expand the core and flatten the porphyrin to accommodate the large high-spin nickel(II) ion, has implications for nickel porphyrin-based molecular devices and the function of heme proteins and methyl-coenzyme M reductase.


Assuntos
Metaloporfirinas/química , Níquel/química , Cristalografia por Raios X , Heme/química , Ligantes , Modelos Moleculares , Conformação Molecular , Oxirredutases/química , Espectrofotometria Ultravioleta , Análise Espectral Raman , Termodinâmica
18.
Inorg Chem ; 42(21): 6824-50, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-14552635

RESUMO

Magnetization measurements and variable temperature optical spectroscopy have been used to investigate, within the 4-300 K temperature range, the electronic structure of the reduced high-potential iron protein (HiPIP) from Chromatium vinosum and the model compounds (Cat)(2)[Fe(4)S(4)(SR)(4)], where RS(-) = 2,4,6-triisopropylphenylthiolate (1), 2,6-diphenylphenylthiolate (2), diphenylmethylthiolate (3), 2,4,6-triisopropylbenzylthiolate (4, 4'), 2,4,6-triphenylbenzylthiolate (5, 5'), 2,4,6-tri-tert-butylbenzylthiolate (6), and Cat(+) = (+)NEt(4) (1, 2, 3, 4', 5', 6), (+)PPh(4) (4, 5). The newly synthesized 2(2)(-), 3(2)(-), 5(2)(-), and 6(2)(-) complexes are, as 1(2)(-) and 4(2)(-), excellent models of the reduced HiPIPs: they exhibit the [Fe(4)S(4)](3+/2+) redox couple, because of the presence of bulky ligands which stabilize the [Fe(4)S(4)](3+) oxidized core. Moreover, the presence of SCH(2) groups in 4(2)(-), 5(2)(-), and 6(2)(-), as in the [Fe(4)S(4)] protein cores, makes them good biomimetic models of the HiPIPs. The X-ray structure of 2 is reported: it crystallizes in the orthorhombic space group Pcca with no imposed symmetry and a D(2)(d)()-distorted geometry of the [Fe(4)S(4)](2+) core. Fit of the magnetization data of the reduced HiPIP and of the 1, 2, 3, 4, 5, and 6 compounds within the exchange and double exchange theoretical framework leads to exchange coupling parameters J = 261-397 cm(-)(1). A firm determination of the double exchange parameters B or, equivalently, the transfer integrals beta = 5B could not be achieved that way. The obtained |B| values remain however high, attesting thus to the strength of the spin-dependent electronic delocalization which is responsible for lowest lying electronic states being characterized by delocalized mixed-valence pairs of maximum spin (9)/(2). Electronic properties of these systems are then accounted for by the population of a diamagnetic ground level and excited paramagnetic triplet and quintet levels, which are respectively J and 3J above the ground level. Optical studies of 1, 2, 4', 5', and 6 but also of (NEt(4))(2)[Fe(4)S(4)(SCH(2)C(6)H(5))(4)] and the isomorph (NEt(4))(2)[Fe(4)S(4)(S-t-Bu)(4)] and (NEt(4))(2)[Fe(4)Se(4)(S-t-Bu)(4)] compounds reveal two absorption bands in the near infrared region, at 705-760 nm and 1270-1430 nm, which appear to be characteristic of valence-delocalized and ferromagnetically coupled [Fe(2)X(2)](+) (X = S, Se) units. The |B| and |beta| values can be directly determined from the location at 10|B| of the low-energy band, and are respectively of 699-787 and 3497-3937 cm(-)(1). Both absorption bands are also present in the 77 K spectrum of the reduced HiPIP, at 700 and 1040 nm (Cerdonio, M.; Wang, R.-H.; Rawlings, J.; Gray, H. B. J. Am. Chem. Soc. 1974, 96, 6534-6535). The blue shift of the low-energy band is attributed to the inequivalent environments of the Fe sites in the protein, rather than to an increase of |beta| when going from the models to the HiPIP. The small differences observed in known geometries of [Fe(4)S(4)](2+) clusters, especially in the Fe-Fe distances, cannot probably lead to drastic changes in the direct Fe-Fe interactions (parameter beta) responsible for the delocalization phenomenon. These differences are however magnetostructurally significant as shown by the 261-397 cm(-)(1) range spanned by J. The cluster's geometry, hence the efficiency of the Femicro(3)-S-Fe superexchange pathways, is proposed to be controlled by the more or less tight fit of the cluster within the cavity provided by its environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA