Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 84: 105453, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944748

RESUMO

Memantine is a non-competitive antagonist with a moderate affinity to the N-methyl-d-Aspartate (NMDA) receptor. The present study assessed memantine's neuroprotective activity using electrophysiology of ex-vivo hippocampal slices. Interestingly, a nicotinic component was necessary for memantine's neuroprotection (NP). Memantine demonstrated a bell-shaped dose-response curve of NP against NMDA. Memantine was neuroprotective at concentrations below 3 µM, but the NP declined at higher concentrations (>3 µM) when memantine inhibits the NMDA receptor. Additional evidence that memantine NP is mediated by an alternate mechanism independent of the inhibition of the NMDA receptor is supported by its ability to protect neurons when applied before or after the NMDA insult and in the presence of D(-)-2-Amino-5-phosphonopentanoic acid (APV), the standard NMDA receptor inhibitor. We found several similarities between the memantine NP mechanism and the neuroprotective nicotinic drug, the 4R cembranoid. Memantine's NP requires the release of acetylcholine, the activation of α4ß2, and is independent of MEK/MAPK signaling. Both 4R and memantine require the activation of PI3K/AKT for NP against NMDA-mediated excitotoxicity, although at different concentrations. In conclusion, our studies show memantine is neuroprotective through a nicotinic pathway, similar to the nicotinic drug 4R. This information leads to a better understanding of memantine's mechanisms of action and explains its dose-dependent effectiveness in Alzheimer's and other neurological disorders.


Assuntos
Memantina , Fármacos Neuroprotetores , Hipocampo/metabolismo , Memantina/metabolismo , Memantina/farmacologia , N-Metilaspartato/toxicidade , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Nicotina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
J Neurosci Res ; 82(5): 631-41, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16247800

RESUMO

Nicotine has been reported to be neuroprotective in experimental and epidemiological studies. In addition to nicotine, tobacco and cigarette smoke contain cembranoids, which are antagonists of neuronal nicotinic receptors (nAChR). Exposure of hippocampal slices to N-methyl-D-aspartate (NMDA) decreases the population spikes (PS). This parameter has been used as a measure of excitotoxicity. Surprisingly, both nicotine and tobacco cembranoids protected against NMDA and this neuroprotection was not blocked by methyllycaconitine (MLA), an antagonist of alpha7 nAChR. On the contrary, MLA had a neuroprotective effect of its own. We examined the effect of the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-cembra-2,7,11-triene-4,6-diol (4R) on the neuroprotection against NMDA. DHbetaE, a selective antagonist of alpha4beta2 nAChR, inhibited the neuroprotection by nicotine, 4R, and MLA, suggesting the involvement of alpha4beta2 nAChRs in the neuroprotection. The cell-signaling pathways underlying the neuroprotection by 4R and by nicotine are different. The activity of phosphatidylinositol-3 kinase (PI3K) was required in both cases; however, 4R required the activity of L-type calcium channels and CAM kinase, whereas nicotine required the extracellular signal regulated kinase-1,2 (ERK) and protein kinase C (PKC). In addition, 4R did not enhance total phospho-ERK-1/2 but increased the amount of total Akt/PKB phosphorylated on the activation site and of glycogen synthase kinase 3-beta phosphorylated on the inhibitory site. Total levels of phosphoenzymes are presented instead of the ratio of phospho- over total enzyme because in preliminary experiments total ERK-1/2 levels were slightly increased by 4R. In conclusion, these findings demonstrate that there are two different nicotinic neuroprotective mechanisms mediated by alpha4beta2.


Assuntos
N-Metilaspartato/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Nicotiana/química , Antagonistas Nicotínicos/farmacologia , Extratos Vegetais/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Diterpenos/farmacologia , Interações Medicamentosas/fisiologia , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/antagonistas & inibidores , Técnicas de Cultura de Órgãos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo
3.
J Pharmacol Exp Ther ; 305(3): 1071-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12649299

RESUMO

Although in neuronal cultures nicotine was reported to prevent early and delayed excitotoxic death, no studies with nicotinic drugs have been done with acute hippocampal slices. We investigated the effect of nicotine and methyllycaconitine (MLA) on the toxicity of N-methyl-d-aspartate (NMDA) in the CA1 area of hippocampal slices. The excitotoxic effect of NMDA was assessed as decreased recovery of the capability to produce synaptically evoked population spikes (PSs). Application of nicotine or MLA before NMDA application increased the recovery of PSs. This electrophysiological recovery was used as a measure of the early neuroprotective events. The neuroprotection conferred by both nicotine and MLA was inhibited by dihydro-beta-erythroidine, showing mediation of neuroprotection by alpha 4 beta 2 neuronal nicotinic receptors (nAChRs). Because nicotine activates alpha 4 beta 2 and other nAChR subtypes, whereas 10 nM MLA inhibits the alpha 7 subtype, we propose the involvement of a neuronal circuitry-dependent mechanism for nicotinic neuroprotection. The effect of nicotine downstream from the receptors was investigated using inhibitors of cell signaling. The results suggest that the effect of nicotine is mediated by tyrosine receptor kinases, 1,2-phosphatidylinositol-3 kinase, and the mitogen-activated extracellular signal-regulated kinases. Although nicotine neuroprotection is Ca2+-dependent, neither L-type Ca2+ channels nor calmodulin-dependent protein kinase is involved in the effect of nicotine. In summary, these results suggest that in acute slices nicotinic protection is initiated either by direct activation of alpha 4 beta 2 or indirectly by inhibition of alpha 7 followed by signal transduction involving tyrosine kinases, phospholipid-dependent kinases, and mitogen-activated kinases.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , N-Metilaspartato/farmacologia , Receptores Nicotínicos/fisiologia , Animais , Feminino , Hipocampo/fisiologia , Técnicas In Vitro , Nicotina/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA