Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116893, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850653

RESUMO

Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).


Assuntos
DNA , Glipicanas , Transfecção , Humanos , Células HEK293 , Transfecção/métodos , Glipicanas/metabolismo , Glipicanas/genética , DNA/metabolismo , DNA/genética , Polietilenoimina/química , Proteoglicanas de Heparan Sulfato/metabolismo , Concentração Osmolar
2.
Mol Ther Methods Clin Dev ; 32(1): 101190, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327808

RESUMO

The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA