Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
BMC Chem ; 17(1): 161, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993971

RESUMO

Melanoma presents increasing prevalence and poor outcomes. Progression to aggressive stages is characterized by overexpression of the transcription factor E2F1 and activation of downstream prometastatic gene regulatory networks (GRNs). Appropriate therapeutic manipulation of the E2F1-governed GRNs holds the potential to prevent metastasis however, these networks entail complex feedback and feedforward regulatory motifs among various regulatory layers, which make it difficult to identify druggable components. To this end, computational approaches such as mathematical modeling and virtual screening are important tools to unveil the dynamics of these signaling networks and identify critical components that could be further explored as therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing melanoma cells to reconstruct a core regulatory network underlying aggressive melanoma. Using logic-based in silico perturbation experiments of a core regulatory network, we identified that simultaneous perturbation of Protein kinase B (AKT1) and oncoprotein murine double minute 2 (MDM2) drastically reduces EMT in melanoma. Using the structures of the two protein signatures, virtual screening strategies were performed with the FDA-approved drug library. Furthermore, by combining drug repurposing and computer-aided drug design techniques, followed by molecular dynamics simulation analysis, we identified two potent drugs (Tadalafil and Finasteride) that can efficiently inhibit AKT1 and MDM2 proteins. We propose that these two drugs could be considered for the development of therapeutic strategies for the management of aggressive melanoma.

2.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36252807

RESUMO

We live in an unprecedented time in oncology. We have accumulated samples and cases in cohorts larger and more complex than ever before. New technologies are available for quantifying solid or liquid samples at the molecular level. At the same time, we are now equipped with the computational power necessary to handle this enormous amount of quantitative data. Computational models are widely used helping us to substantiate and interpret data. Under the label of systems and precision medicine, we are putting all these developments together to improve and personalize the therapy of cancer. In this review, we use melanoma as a paradigm to present the successful application of these technologies but also to discuss possible future developments in patient care linked to them. Melanoma is a paradigmatic case for disruptive improvements in therapies, with a considerable number of metastatic melanoma patients benefiting from novel therapies. Nevertheless, a large proportion of patients does not respond to therapy or suffers from adverse events. Melanoma is an ideal case study to deploy advanced technologies not only due to the medical need but also to some intrinsic features of melanoma as a disease and the skin as an organ. From the perspective of data acquisition, the skin is the ideal organ due to its accessibility and suitability for many kinds of advanced imaging techniques. We put special emphasis on the necessity of computational strategies to integrate multiple sources of quantitative data describing the tumour at different scales and levels.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Inteligência Artificial , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Oncologia , Simulação por Computador
3.
Cell Mol Life Sci ; 79(5): 229, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35396689

RESUMO

Skeletal muscle tissue engineering aims at generating biological substitutes that restore, maintain or improve normal muscle function; however, the quality of cells produced by current protocols remains insufficient. Here, we developed a multifactor-based protocol that combines adenovector (AdV)-mediated MYOD expression, small molecule inhibitor and growth factor treatment, and electrical pulse stimulation (EPS) to efficiently reprogram different types of human-derived multipotent stem cells into physiologically functional skeletal muscle cells (SMCs). The protocol was complemented through a novel in silico workflow that allows for in-depth estimation and potentially optimization of the quality of generated muscle tissue, based on the transcriptomes of transdifferentiated cells. We additionally patch-clamped phenotypic SMCs to associate their bioelectrical characteristics with their transcriptome reprogramming. Overall, we set up a comprehensive and dynamic approach at the nexus of viral vector-based technology, bioinformatics, and electrophysiology that facilitates production of high-quality skeletal muscle cells and can guide iterative cycles to improve myo-differentiation protocols.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Diferenciação Celular/fisiologia , Humanos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Células-Tronco , Fluxo de Trabalho
5.
Pharmaceutics ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678712

RESUMO

Cancer cells have a remarkable ability to evade recognition and destruction by the immune system. At the same time, cancer has been associated with chronic inflammation, while certain autoimmune diseases predispose to the development of neoplasia. Although cancer immunotherapy has revolutionized antitumor treatment, immune-related toxicities and adverse events detract from the clinical utility of even the most advanced drugs, especially in patients with both, metastatic cancer and pre-existing autoimmune diseases. Here, the combination of multi-omics, data-driven computational approaches with the application of network concepts enables in-depth analyses of the dynamic links between cancer, autoimmune diseases, and drugs. In this review, we focus on molecular and epigenetic metastasis-related processes within cancer cells and the immune microenvironment. With melanoma as a model, we uncover vulnerabilities for drug development to control cancer progression and immune responses. Thereby, drug repurposing allows taking advantage of existing safety profiles and established pharmacokinetic properties of approved agents. These procedures promise faster access and optimal management for cancer treatment. Together, these approaches provide new disease-based and data-driven opportunities for the prediction and application of targeted and clinically used drugs at the interface of immune-mediated diseases and cancer towards next-generation immunotherapies.

6.
Front Cell Dev Biol ; 9: 737735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650986

RESUMO

The transcription factor p73 is a structural and functional homolog of TP53, the most famous and frequently mutated tumor-suppressor gene. The TP73 gene can synthesize an overwhelming number of isoforms via splicing events in 5' and 3' ends and alternative promoter usage. Although it originally came into the spotlight due to the potential of several of these isoforms to mimic p53 functions, it is now clear that TP73 has its own unique identity as a master regulator of multifaceted processes in embryonic development, tissue homeostasis, and cancer. This remarkable functional pleiotropy is supported by a high degree of mechanistic heterogeneity, which extends far-beyond the typical mode of action by transactivation and largely relies on the ability of p73 isoforms to form protein-protein interactions (PPIs) with a variety of nuclear and cytoplasmic proteins. Importantly, each p73 isoform carries a unique combination of functional domains and residues that facilitates the establishment of PPIs in a highly selective manner. Herein, we summarize the expanding functional repertoire of TP73 in physiological and oncogenic processes. We emphasize how TP73's ability to control neurodevelopment and neurodifferentiation is co-opted in cancer cells toward neoneurogenesis, an emerging cancer hallmark, whereby tumors promote their own innervation. By further exploring the canonical and non-canonical mechanistic patterns of p73, we apprehend its functional diversity as the result of a sophisticated and coordinated interplay of: (a) the type of p73 isoforms (b) the presence of p73 interaction partners in the cell milieu, and (c) the architecture of target gene promoters. We suppose that dysregulation of one or more of these parameters in tumors may lead to cancer initiation and progression by reactivating p73 isoforms and/or p73-regulated differentiation programs thereof in a spatiotemporally inappropriate manner. A thorough understanding of the mechanisms supporting p73 functional diversity is of paramount importance for the efficient and precise p73 targeting not only in cancer, but also in other pathological conditions where TP73 dysregulation is causally involved.

7.
Front Cell Dev Biol ; 9: 682619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150777

RESUMO

Cancer acquires metastatic potential and evolves via co-opting gene regulatory networks (GRN) of embryonic development and tissue homeostasis. Such GRNs are encoded in the genome and frequently conserved among species. Considering that all metazoa have evolved from a common ancestor via major macroevolutionary events which shaped those GRNs and increased morphogenetic complexity, we sought to examine whether there are any key innovations that may be consistently and deterministically linked with metastatic potential across the metazoa clades. To address tumor evolution relative to organismal evolution, we revisited and retrospectively juxtaposed seminal laboratory and field cancer studies across taxa that lie on the evolutionary lineage from cnidaria to humans. We subsequently applied bioinformatics to integrate species-specific cancer phenotypes, multiomics data from up to 42 human cancer types, developmental phenotypes of knockout mice, and molecular phylogenetics. We found that the phenotypic manifestations of metastasis appear to coincide with agnatha-to-gnathostome transition. Genes indispensable for jaw development, a key innovation of gnathostomes, undergo mutations or methylation alterations, are aberrantly transcribed during tumor progression and are causatively associated with invasion and metastasis. There is a preference for deregulation of gnathostome-specific versus pre-gnathostome genes occupying hubs of the jaw development network. According to these data, we propose our systems-based model as an in silico tool the prediction of likely tumor evolutionary trajectories and therapeutic targets for metastasis prevention, on the rationale that the same genes which are essential for key innovations that catalyzed vertebrate evolution, such as jaws, are also important for tumor evolution.

8.
Cancers (Basel) ; 12(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339112

RESUMO

Mechanisms governing tumor progression differ from those of initiation. One enigmatic prometastatic process is the recapitulation of pathways of neural plasticity in aggressive stages. Cancer and neuronal cells develop reciprocal interactions via mutual production and secretion of neuronal growth factors, neurothrophins and/or axon guidance molecules in the tumor microenvironment. Understanding cancer types where this process is active, as well as the drivers, markers and underlying mechanisms, has great significance for blocking tumor progression and improving patient survival. By applying computational and systemic approaches, in combination with experimental validations, we provide compelling evidence that genes involved in neuronal development, differentiation and function are reactivated in tumors and predict poor patient outcomes across various cancers. Across cancers, they co-opt genes essential for the development of distinct anatomical parts of the nervous system, with a frequent preference for cerebral cortex and neural crest-derived enteric nerves. Additionally, we show that p73, a transcription factor with a dual role in neuronal development and cancer, simultaneously induces neurodifferentiation and stemness markers during melanoma progression. Our data yield the basis for elucidating driving forces of the nerve-tumor cell crosstalk and highlight p73 as a promising regulator of cancer neurobiology.

9.
Theranostics ; 10(21): 9620-9643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863950

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as integral components of E2F1-regulated gene regulatory networks (GRNs), but their implication in advanced or treatment-refractory malignancy is unknown. Methods: We combined high-throughput transcriptomic approaches with bioinformatics and structure modeling to search for lncRNAs that participate in E2F1-activated prometastatic GRNs and their phenotypic targets in the highly-relevant case of E2F1-driven aggressive bladder cancer (BC). RNA immunoprecipitation was performed to verify RNA-protein interactions. Functional analyses including qRT-PCR, immunoblotting, luciferase assays and measurement of extracellular fluxes were conducted to validate expression and target gene regulation. Results: We identified E2F1-responsive lncRNA-SLC16A1-AS1 and its associated neighboring protein-coding gene, SLC16A1/MCT1, which both promote cancer invasiveness. Mechanistically, upon E2F1-mediated co-transactivation of the gene pair, SLC16A1-AS1 associates with E2F1 in a structure-dependent manner and forms an RNA-protein complex that enhances SLC16A1/MCT1 expression through binding to a composite SLC16A1-AS1:E2F1-responsive promoter element. Moreover, SLC16A1-AS1 increases aerobic glycolysis and mitochondrial respiration and fuels ATP production by fatty acid ß-oxidation. These metabolic changes are accompanied by alterations in the expression of the SLC16A1-AS1:E2F1-responsive gene PPARA, a key mediator of fatty acid ß-oxidation. Conclusions: Our results unveil a new gene regulatory program by which E2F1-induced lncRNA-SLC16A1-AS1 forms a complex with its transcription factor that promotes cancer metabolic reprogramming towards the acquisition of a hybrid oxidative phosphorylation/glycolysis cell phenotype favoring BC invasiveness.


Assuntos
Reprogramação Celular/fisiologia , Fator de Transcrição E2F1/genética , Transportadores de Ácidos Monocarboxílicos/genética , RNA Longo não Codificante/genética , Simportadores/genética , Neoplasias da Bexiga Urinária/genética , Trifosfato de Adenosina/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Mitocôndrias/genética , Oxirredução , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Neoplasias da Bexiga Urinária/patologia
10.
Cancers (Basel) ; 12(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260317

RESUMO

Double strand break (DSB) repair mechanisms guard genome integrity and their deterioration causes genomic instability. Common and rare fragile sites (CFS and RFS, respectively) are particularly vulnerable to instability, and there is an inverse correlation between fragile site (FS) expression and DSB repair protein levels. Upon DSB repair dysfunction, genes residing at these sites are at greater risk of deregulation compared to genes located at non-FS. In this regard, it remains enigmatic why the incidence of miRNA genes at FS is higher compared to non-FS. Herein, using bioinformatics, we examined whether miRNA genes localized at FS inhibit components of DSB repair pathways and assessed their effects on cancer. We show that such miRNAs over-accumulate in RFS, and that FRAXA, which is expressed in Fragile X syndrome, is a conserved hotspot for miRNAs inhibiting DSB repair. Axes of FRAXA-residing miRNAs/DSB repair targets affect survival in a cancer type-specific manner. Moreover, copy number variations in the region encompassing these miRNA genes discriminate survival between male and female patients. Given that, thus far, only CFS have been considered relevant for carcinogenesis, our data are the first to associate RFS with cancer, through the impairment of DSB repair by the FRAXA-residing miRNAs.

11.
Placenta ; 90: 109-117, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056541

RESUMO

INTRODUCTION: Functional disorders of the villous trophoblast may result in preeclampsia through the release of endothelial activating substances. Progranulin is an anti-inflammatory, pro-angiogenic cytokine with TNF-α antagonizing activity. The trophoblastic expression of progranulin is increased during preeclampsia. The aim of the study was to investigate the impact of placental progranulin synthesis on endothelial cell activation. METHODS: Placental progranulin expression was modified by transduction of an adenoviral vector. Primary isolated human umbilical venous endothelial cells (HUVECs) were incubated with conditioned medium of first trimester placental explants. Functional studies on HUVECs included assays for proliferation, viability, cytotoxicity and analyzes of Intercellular adhesion molecule-1 (ICAM-1) and E-selectin expression. RESULTS: Placental progranulin expression was more than 10-fold higher by using an adenoviral-mediated overexpression system (Ad.PGRN) compared to control vector (Ad.CTRL) and untreated controls. Incubation of HUVECs with conditioned placental medium revealed a dose-dependent increase of cytotoxicity, reduced cell proliferation and viability and resulted in an increase of ICAM-1 and E-selectin expression. Overexpression of progranulin (Ad.PGRN) antagonized the ICAM-1 expression induced by conditioned medium. However progranulin did not influence the effects on cell proliferation, viability, cytotoxicity and E-selectin expression in HUVECs. DISCUSSION: Regulation of gene expression in human placental explants is possible by usage of an adenoviral vector system. The increase of endothelial ICAM-1 expression following the incubation with placental conditioned medium was partly reversed by overexpression of placental progranulin. It is suggested that up-regulation of the placental progranulin expression is an endogenous anti-inflammatory mechanism that partially antagonizes the endothelial cell activation during preeclampsia.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Placenta/metabolismo , Progranulinas/metabolismo , Proliferação de Células/fisiologia , Selectina E/metabolismo , Feminino , Humanos , Gravidez , Trofoblastos/metabolismo , Regulação para Cima
12.
Cancers (Basel) ; 11(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569642

RESUMO

Melanoma is a skin cancer which can become metastatic, drug-refractory, and lethal if managed late or inappropriately. An increasing number of melanoma patients exhibits autoimmune diseases, either as pre-existing conditions or as sequelae of immune-based anti-melanoma therapies, which complicate patient management and raise the need for more personalized treatments. STAT3 and/or STAT5 cascades are commonly activated during melanoma progression and mediate the metastatic effects of key oncogenic factors. Deactivation of these cascades enhances antitumor-immune responses, is efficient against metastatic melanoma in the preclinical setting and emerges as a promising targeting strategy, especially for patients resistant to immunotherapies. In the light of the recent realization that cancer and autoimmune diseases share common mechanisms of immune dysregulation, we suggest that the systemic delivery of STAT3 or STAT5 inhibitors could simultaneously target both, melanoma and associated autoimmune diseases, thereby decreasing the overall disease burden and improving quality of life of this patient subpopulation. Herein, we review the recent advances of STAT3 and STAT5 targeting in melanoma, explore which autoimmune diseases are causatively linked to STAT3 and/or STAT5 signaling, and propose that these patients may particularly benefit from treatment with STAT3/STAT5 inhibitors.

13.
J Exp Clin Cancer Res ; 38(1): 292, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287003

RESUMO

BACKGROUND: Bladder cancer progression has been associated with dysfunctional repair of double-strand breaks (DSB), a deleterious type of DNA lesions that fuel genomic instability. Accurate DSB repair relies on two distinct pathways, homologous recombination (HR) and classical non-homologous end-joining (c-NHEJ). The transcription factor E2F1 supports HR-mediated DSB repair and protects genomic stability. However, invasive bladder cancers (BC) display, in contrast to non-invasive stages, genomic instability despite their high E2F1 levels. Hence, E2F1 is either inefficient in controlling DSB repair in this setting, or rewires the repair apparatus towards alternative, error-prone DSB processing pathways. METHODS: RT-PCR and immunoblotting, in combination with bioinformatics tools were applied to monitor c-NHEJ factors status in high-E2F1-expressing, invasive BC versus low-E2F1-expressing, non-invasive BC. In vivo binding of E2F1 on target gene promoters was demonstrated by ChIP assays and E2F1 CRISPR-Cas9 knockdown. MIR888-dependent inhibition of APLF by E2F1 was demonstrated using overexpression and knockdown experiments, in combination with luciferase assays. Methylation status of MIR888 promoter was monitored by methylation-specific PCR. The changes in invasion potential and the DSB repair efficiency were estimated by Boyden chamber assays and pulse field electrophoresis, correspondingly. RESULTS: Herein, we show that E2F1 directly transactivates the c-NHEJ core factors Artemis, DNA-PKcs, ligase IV, NHEJ1, Ku70/Ku80 and XRCC4, but indirectly inhibits APLF, a chromatin modifier regulating c-NHEJ. Inhibition is achieved by miR-888-5p, a testis-specific, X-linked miRNA which, in normal tissues, is often silenced via promoter methylation. Upon hypomethylation in invasive BC cells, MIR888 is transactivated by E2F1 and represses APLF. Consequently, E2F1/miR-888/APLF rewiring is established, generating conditions of APLF scarcity that compromise proper c-NHEJ function. Perturbation of the E2F1/miR-888/APLF axis restores c-NHEJ and ameliorates cell invasiveness. Depletion of miR-888 can establish a 'high E2F1/APLF/DCLRE1C' signature, which was found to be particularly favorable for BC patient survival. CONCLUSION: Suppression of the 'out-of-context' activity of miR-888 improves DSB repair and impedes invasiveness by restoring APLF.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Metilação de DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/genética , Endonucleases/genética , Endonucleases/metabolismo , Técnicas de Silenciamento de Genes , Recombinação Homóloga , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Neoplasias da Bexiga Urinária/patologia
14.
Theranostics ; 9(7): 2003-2016, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037153

RESUMO

Cytotoxic T lymphocyte (CTL) activation contributes to liver damage during sepsis, but the mechanisms involved are largely unknown. Understanding the underlying principle will permit interference with CTL activation and thus, provide a new therapeutic option. Methods: To elucidate the mechanism leading to CTL activation we used the Hepa1-6 cell line in vitro and the mouse model of in vivo polymicrobial sepsis, following cecal-ligation and -puncture (CLP) in wildtype, myeloid specific NOX-2, global NOX2 and NOX4 knockout mice, and their survival as a final readout. In this in vivo setting, we also determined hepatic mRNA and protein expression as well as clinical parameters of liver damage - aspartate- and alanine amino-transaminases. Hepatocyte specific overexpression of PD-L1 was achieved in vivo by adenoviral infection and transposon-based gene transfer using hydrodynamic injection. Results: We observed downregulation of PD-L1 on hepatocytes in the murine sepsis model. Adenoviral and transposon-based gene transfer to restore PD-L1 expression, significantly improved survival and reduced the release of liver damage, as PD-L1 is a co-receptor that negatively regulates T cell function. Similar protection was observed during pharmacological intervention using recombinant PD-L1-Fc. N-acetylcysteine blocked the downregulation of PD-L1 suggesting the involvement of reactive oxygen species. This was confirmed in vivo, as we observed significant upregulation of PD-L1 expression in NOX4 knockout mice, following sham operation, whereas its expression in global as well as myeloid lineage NOX2 knockout mice was comparable to that in the wild type animals. PD-L1 expression remained high following CLP only in total NOX2 knockouts, resulting in significantly reduced release of liver damage markers. Conclusion: These results suggest that, contrary to common assumption, maintaining PD-L1 expression on hepatocytes improves liver damage and survival of mice during sepsis. We conclude that administering recombinant PD-L1 or inhibiting NOX2 activity might offer a new therapeutic option in sepsis.


Assuntos
Antígeno B7-H1/imunologia , Fígado/imunologia , Sepse/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Hepatopatias/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/imunologia
15.
Theranostics ; 9(5): 1490-1509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867845

RESUMO

Metastasis management remains a long-standing challenge. High abundance of E2F1 triggers tumor progression by developing protein-protein interactions (PPI) with coregulators that enhance its potential to activate a network of prometastatic transcriptional targets. Methods: To identify E2F1-coregulators, we integrated high-throughput Co-immunoprecipitation (IP)/mass spectometry, GST-pull-down assays, and structure modeling. Potential inhibitors of PPI discovered were found by bioinformatics-based pharmacophore modeling, and transcriptome profiling was conducted to screen for coregulated downstream targets. Expression and target gene regulation was validated using qRT-PCR, immunoblotting, chromatin IP, and luciferase assays. Finally, the impact of the E2F1-coregulator complex and its inhibiting drug on metastasis was investigated in vitro in different cancer entities and two mouse metastasis models. Results: We unveiled that E2F1 forms coactivator complexes with metastasis-associated protein 1 (MTA1) which, in turn, is directly upregulated by E2F1. The E2F1:MTA1 complex potentiates hyaluronan synthase 2 (HAS2) expression, increases hyaluronan production and promotes cell motility. Disruption of this prometastatic E2F1:MTA1 interaction reduces hyaluronan synthesis and infiltration of tumor-associated macrophages in the tumor microenvironment, thereby suppressing metastasis. We further demonstrate that E2F1:MTA1 assembly is abrogated by small-molecule, FDA-approved drugs. Treatment of E2F1/MTA1-positive, highly aggressive, circulating melanoma cells and orthotopic pancreatic tumors with argatroban prevents metastasis and cancer relapses in vivo through perturbation of the E2F1:MTA1/HAS2 axis. Conclusion: Our results propose argatroban as an innovative, E2F-coregulator-based, antimetastatic drug. Cancer patients with the infaust E2F1/MTA1/HAS2 signature will likely benefit from drug repositioning.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Fator de Transcrição E2F1/metabolismo , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Neoplasias/tratamento farmacológico , Mapas de Interação de Proteínas/efeitos dos fármacos , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Arginina/análogos & derivados , Linhagem Celular , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Camundongos , Modelos Teóricos , Ácidos Pipecólicos/isolamento & purificação , Ácidos Pipecólicos/farmacologia , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Sulfonamidas
16.
Methods Mol Biol ; 1912: 33-52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30635889

RESUMO

The transcription factor p73 synthesizes a large number of isoforms and presents high structural and functional homology with p53, a well-known tumor suppressor and a famous "Holy Grail" of anticancer targeting. p73 has attracted increasing attention mainly because (a) unlike p53, p73 is rarely mutated in cancer, (b) some p73 isoforms can inhibit all hallmarks of cancer, and (c) it has the ability to mimic oncosuppressive functions of p53, even in p53-mutated cells. These attributes render p73 and its downstream pathways appealing for therapeutic targeting, especially in mutant p53-driven cancers. p73 functions are, at least partly, mediated by microRNAs (miRNAs), which constitute nodal components of p73-governed networks. p73 not only regulates transcription of crucial miRNA genes, but is also predicted to affect miRNA populations in a transcription-independent manner by developing protein-protein interactions with components of the miRNA processing machinery. This combined effect of p73, both in miRNA transcription and maturation, appears to be isoform-dependent and can result in a systemic switch of cell miRNomes toward either an anti-oncogenic or oncogenic outcome. In this review, we combine literature search with bioinformatics approaches to reconstruct the p73-governed miRNA network and discuss how these crosstalks may be exploited to develop next-generation therapeutics.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , MicroRNAs/genética , Neoplasias/genética , Proteína Tumoral p73/metabolismo , Antagomirs/farmacologia , Antagomirs/uso terapêutico , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Tumoral p73/genética
17.
Cancer Lett ; 442: 299-309, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445206

RESUMO

Melanoma is an aggressive cancer with poor prognosis, requiring personalized management of advanced stages and establishment of molecular markers. Melanomas derive from melanocytes, which specifically express tyrosinase, the rate-limiting enzyme of melanin-synthesis. We demonstrate that melanomas with high levels of DNp73, a cancer-specific variant of the p53 family member p73 and driver of melanoma progression show, in contrast to their less-aggressive low-DNp73 counterparts, hypopigmentation in vivo. Mechanistically, reduced melanin-synthesis is mediated by a DNp73-activated IGF1R/PI3K/AKT axis leading to tyrosinase ER-arrest and proteasomal degradation. Tyrosinase loss triggers reactivation of the EMT signaling cascade, a mesenchymal-like cell phenotype and increased invasiveness. DNp73-induced depigmentation, Slug increase and changes in cell motility are recapitulated in neural crest-derived melanophores of Xenopus embryos, underscoring a previously unnoticed physiological role of tyrosinase as EMT inhibitor. This data provides a mechanism of hypopigmentation accompanying cancer progression, which can be exploited in precision diagnosis of patients with melanoma-associated hypopigmentation (MAH), currently seen as a favorable prognostic factor. The DNp73/IGF1R/Slug signature in colorless lesions might aid to clinically discriminate between patients with MAH-associated metastatic disease and those, where MAH is indeed a sign of regression.


Assuntos
Transição Epitelial-Mesenquimal , Hipopigmentação/enzimologia , Melaninas/metabolismo , Melanócitos/enzimologia , Melanoma/enzimologia , Monofenol Mono-Oxigenase/metabolismo , Neoplasias Cutâneas/enzimologia , Proteína Tumoral p73/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Humanos , Hipopigmentação/genética , Hipopigmentação/patologia , Melanócitos/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Monofenol Mono-Oxigenase/genética , Invasividade Neoplásica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Proteína Tumoral p73/genética , Xenopus laevis
18.
Semin Cancer Biol ; 53: 90-109, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29966677

RESUMO

Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
19.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt B): 2315-2328, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29410200

RESUMO

Cellular phenotypes are established and controlled by complex and precisely orchestrated molecular networks. In cancer, mutations and dysregulations of multiple molecular factors perturb the regulation of these networks and lead to malignant transformation. High-throughput technologies are a valuable source of information to establish the complex molecular relationships behind the emergence of malignancy, but full exploitation of this massive amount of data requires bioinformatics tools that rely on network-based analyses. In this report we present the Virtual Melanoma Cell, an online tool developed to facilitate the mining and interpretation of high-throughput data on melanoma by biomedical researches. The platform is based on a comprehensive, manually generated and expert-validated regulatory map composed of signaling pathways important in malignant melanoma. The Virtual Melanoma Cell is a tool designed to accept, visualize and analyze user-generated datasets. It is available at: https://www.vcells.net/melanoma. To illustrate the utilization of the web platform and the regulatory map, we have analyzed a large publicly available dataset accounting for anti-PD1 immunotherapy treatment of malignant melanoma patients.


Assuntos
Bases de Dados Factuais , Redes Reguladoras de Genes , Imunoterapia , Internet , Melanoma , Modelos Biológicos , Proteínas de Neoplasias , Receptor de Morte Celular Programada 1 , Transdução de Sinais , Humanos , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Theranostics ; 8(4): 1106-1120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464002

RESUMO

High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. Methods: We integrated bioinformatics, structural and kinetic modelling, and experiments to study cooperative regulation of E2F1 by microRNA (miRNA) pairs in the context of anticancer chemotherapy resistance. Results: We showed that an enhanced E2F1 repression efficiency can be achieved in chemoresistant tumour cells through two cooperating miRNAs. Sequence and structural information were used to identify potential miRNA pairs that can form tertiary structures with E2F1 mRNA. We then employed molecular dynamics simulations to show that among the identified triplexes, miR-205-5p and miR-342-3p can form the most stable triplex with E2F1 mRNA. A mathematical model simulating the E2F1 regulation by the cooperative miRNAs predicted enhanced E2F1 repression, a feature that was verified by in vitro experiments. Finally, we integrated this cooperative miRNA regulation into a more comprehensive network to account for E2F1-related chemoresistance in tumour cells. The network model simulations and experimental data indicate the ability of enhanced expression of both miR-205-5p and miR-342-3p to decrease tumour chemoresistance by cooperatively repressing E2F1. Conclusions: Our results suggest that pairs of cooperating miRNAs could be used as potential RNA therapeutics to reduce E2F1-related chemoresistance.


Assuntos
Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição E2F1/biossíntese , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Humanos , MicroRNAs/química , Modelos Teóricos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA