Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 21(1): 243-249, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34860526

RESUMO

N-Linked glycans are structurally diverse polysaccharides that represent significant biological relevance due to their involvement in disease progression and cancer. Due to their complex nature, N-linked glycans pose many analytical challenges requiring the continued development of analytical technologies. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a hybrid ionization technique commonly used for mass spectrometry imaging (MSI) applications. Previous work demonstrated IR-MALDESI to significantly preserve sialic acid containing N-linked glycans that otherwise require chemical derivatization prior to detection. Here, we demonstrate the first analysis of N-linked glycans in situ by IR-MALDESI MSI. A formalin-fixed paraffin-embedded human prostate tissue was analyzed in negative ionization mode after tissue washing, antigen retrieval, and pneumatic application of PNGase F for enzymatic digestion of N-linked glycans. Fifty-three N-linked glycans were confidently identified in the prostate sample where more than 60% contained sialic acid residues. This work demonstrates the first steps in N-linked glycan imaging of biological tissues by IR-MALDESI MSI. Raw data files are available in MassIVE (identifier: MSV000088414).


Assuntos
Próstata , Espectrometria de Massas por Ionização por Electrospray , Formaldeído/química , Humanos , Lasers , Masculino , Inclusão em Parafina , Polissacarídeos/química , Próstata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-32603137

RESUMO

Glycan analysis by mass spectrometry has rapidly progressed due to the interest in understanding the role of glycans in disease and tumor progression. Glycans are complex molecules that pose analytical challenges due to their isomeric compositions, labile character, and ionization preferences. This study sought to demonstrate infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) as a novel approach for the direct analysis of N-linked glycans. The glycoprotein bovine fetuin was chosen for this analysis as its glycome is well-characterized and heavily composed of sialylated glycans. Native N-linked glycans produced by enzymatic cleavage (via PNGase F) of bovine fetuin were analyzed directly by IR-MALDESI in both positive and negative ionization mode. In this study, we detected 12 N-linked glycans in negative mode and 4 N-linked glycans in positive mode, a significant increase in the amount of underivatized glycans detected by other ionization sources. Importantly, all N-linked glycans detected contained at least one sialic acid residue, which are known to be labile. This work represents a critical first step for N-linked glycan analysis by IR-MALDESI with future efforts directed at mass spectrometry imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA