Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(1): 47-56, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34843615

RESUMO

Functionalized multi-walled carbon nanotubes (MWCNTs) containing radioactive salts are proposed as a potential system for radioactivity delivery. MWCNTs are loaded with isotopically enriched 152-samarium chloride (152SmCl3), the ends of the MWCNTs are sealed by high temperature treatment, and the encapsulated 152Sm is neutron activated to radioactive 153Sm. The external walls of the radioactive nanocapsules are functionalized through arylation reaction, to introduce hydrophilic chains and increase the water dispersibility of CNTs. The organ biodistribution profiles of the nanocapsules up to 24 h are assessed in naïve mice and different tumor models in vivo. By quantitative γ-counting, 153SmCl3@MWCNTs-NH2 exhibite high accumulation in organs without leakage of the internal radioactive material to the bloodstream. In the treated mice, highest uptake is detected in the lung followed by the liver and spleen. Presence of tumors in brain or lung does not increase percentage accumulation of 153SmCl3@MWCNTs-NH2 in the respective organs, suggesting the absence of the enhanced permeation and retention effect. This study presents a chemical functionalization protocol that is rapid (∼one hour) and can be applied to filled radioactive multi-walled carbon nanocapsules to improve their water dispersibility for systemic administration for their use in targeted radiotherapy.


Assuntos
Materiais Biocompatíveis/farmacocinética , Glioma/radioterapia , Neoplasias Pulmonares/radioterapia , Melanoma/radioterapia , Nanocápsulas/química , Nanotubos de Carbono/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Injeções Intravenosas , Neoplasias Pulmonares/secundário , Teste de Materiais , Camundongos , Estrutura Molecular , Tamanho da Partícula , Radioisótopos , Samário , Distribuição Tecidual
2.
ACS Nano ; 14(1): 129-141, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31742990

RESUMO

Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (152Sm), which can then be activated on demand to their "hot" radioactive form (153Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11.37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy.


Assuntos
Carbono/química , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Nanocápsulas/química , Nêutrons , Samário/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Propriedades de Superfície
3.
Sci Rep ; 7: 42605, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198410

RESUMO

This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 µg/ml to 100 µg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 µg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.


Assuntos
Anticorpos , Metais , Nanocápsulas , Nanotubos de Carbono , Radioterapia , Animais , Anticorpos/química , Anticorpos/imunologia , Sobrevivência Celular , Citocinas/biossíntese , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Metais/química , Camundongos , Estrutura Molecular , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Células RAW 264.7 , Radioterapia/métodos
4.
Nat Commun ; 7: 13118, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782209

RESUMO

The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular 'blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as 'contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.


Assuntos
Nanotubos de Carbono/química , Espectrometria por Raios X/instrumentação , Bário/química , Estudos de Viabilidade , Fluorescência , Criptônio/química , Chumbo/química , Peptídeos/química , Espectrometria por Raios X/métodos
5.
Nanoscale ; 8(25): 12626-38, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26733445

RESUMO

In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.


Assuntos
Cetuximab/administração & dosagem , Metais/administração & dosagem , Nanotubos de Carbono , Neoplasias/radioterapia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Receptores ErbB , Humanos , Radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA