Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0280692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928392

RESUMO

Cryptococcus neoformans (CN) cells survive within the acidic phagolysosome of macrophages (MΦ) for extended times, then escape without impacting the viability of the host cell via a phenomenon that has been coined 'vomocytosis'. Through this mechanism, CN disseminate throughout the body, sometimes resulting in a potentially fatal condition-Cryptococcal Meningitis (CM). Justifiably, vomocytosis studies have focused primarily on MΦ, as alveolar MΦ within the lung act as first responders that ultimately expel this fungal pathogen. Herein, we hypothesize that dendritic cells (DCs), an innate immune cell with attributes that include phagocytosis and antigen presentation, can also act as 'vomocytes'. Presciently, this report shows that vomocytosis of CN indeed occurs from murine, bone marrow-derived DCs. Primarily through time-lapse microscopy imaging, we show that rates of vomocytosis events from DCs are comparable to those seen from MΦ and further, are independent of the presence of the CN capsule and infection ratios. Moreover, the phagosome-altering drug bafilomycin A inhibits this phenomenon from DCs. Although DC immunophenotype does not affect the total number of vomocytic events, we observed differences in the numbers of CN per phagosome and expulsion times. Interestingly, these observations were similar in murine, bone marrow-derived MΦ. This work not only demonstrates the vomocytic ability of DCs, but also investigates the complexity of vomocytosis regulation in this cell type and MΦ under multiple modulatory conditions. Understanding the vomocytic behavior of different phagocytes and their phenotypic subtypes is needed to help elucidate the full picture of the dynamic interplay between CN and the immune system. Critically, deeper insight into vomocytosis could reveal novel approaches to treat CM, as well as other immune-related conditions.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Camundongos , Cryptococcus neoformans/fisiologia , Medula Óssea , Criptococose/microbiologia , Fagocitose , Células Dendríticas
2.
Front Pharmacol ; 12: 680043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122106

RESUMO

Rheumatoid arthritis (RA) is a debilitating autoimmune disease with grave physical, emotional and socioeconomic consequences. Despite advances in targeted biologic and pharmacologic interventions that have recently come to market, many patients with RA continue to have inadequate response to therapies, or intolerable side effects, with resultant progression of their disease. In this review, we detail multiple biomolecular pathways involved in RA disease pathogenesis to elucidate and highlight pathways that have been therapeutic targets in managing this systemic autoimmune disease. Here we present an up-to-date accounting of both emerging and approved pharmacological treatments for RA, detailing their discovery, mechanisms of action, efficacy, and limitations. Finally, we turn to the emerging fields of bioengineering and cell therapy to illuminate possible future targeted therapeutic options that combine material and biological sciences for localized therapeutic action with the potential to greatly reduce side effects seen in systemically applied treatment modalities.

3.
Cell Mol Bioeng ; 13(5): 541-557, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33184582

RESUMO

INTRODUCTION: Lactate secreted by tumors is not just a byproduct, but rather an active modulator of immune cells. There are few studies aimed at investigating the true effect of lactate, which is normally confounded by pH. Such a knowledge gap needs to be addressed. Herein, we studied the immunomodulatory effects of lactate on dendritic cells (DCs) and macrophages (MΦs). METHODS: Bone marrow-derived innate immune cells were treated with 50 mM sodium lactate (sLA) and incubated for 2 days or 5 days at 37 °C. Controls included media, lipopolysaccharide (LPS), MCT inhibitors (α-cyano-4-hydroxycinnamic acid and AR-C15585). Flow cytometric analysis of immune phenotypes were performed by incubating cells with specific marker antibodies and viability dye. Differential expression analyses were conducted on R using limma-voom and adjusted p-values were generated using the Bejamini-Hochberg Procedure. RESULTS: Lactate exposure attenuated DC maturation through the downregulation of CD80 and MHCII expression under LPS stimulation. For MΦs, lactate exposure resulted in M2 polarization as evidenced by the reduction of M1 markers (CD38 and iNOS), and the increase in expression of CD163 and Arg1. We also revealed the role of monocarboxylate transporters (MCTs) in mediating lactate effect in MΦs. MCT4 inhibition significantly boosted lactate M2 polarization, while blocking of MCT1/2 failed to reverse the immunosuppressive effect of lactate, correlating with the result of gene expression that lactate increased MCT4 expression, but downregulated the expression of MCT1/2. CONCLUSIONS: This research provides valuable insight on the influence of metabolic products on tumor immunity and will help to identify novel metabolic targets for augmenting cancer immunotherapies.

4.
Adv Ther (Weinh) ; 3(11): 2000129, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32838028

RESUMO

The immune system is the key target for vaccines and immunotherapeutic approaches aimed at blunting infectious diseases, cancer, autoimmunity, and implant rejection. However, systemwide immunomodulation is undesirable due to the severe side effects that typically accompany such strategies. In order to circumvent these undesired, harmful effects, scientists have turned to tailorable biomaterials that can achieve localized, potent release of immune-modulating agents. Specifically, "stimuli-responsive" biomaterials hold a strong promise for delivery of immunotherapeutic agents to the disease site or disease-relevant tissues with high spatial and temporal accuracy. This review provides an overview of stimuli-responsive biomaterials used for targeted immunomodulation. Stimuli-responsive or "environmentally responsive" materials are customized to specifically react to changes in pH, temperature, enzymes, redox environment, photo-stimulation, molecule-binding, magnetic fields, ultrasound-stimulation, and electric fields. Moreover, the latest generation of this class of materials incorporates elements that allow for response to multiple stimuli. These developments, and other stimuli-responsive materials that are on the horizon, are discussed in the context of controlling immune responses.

5.
mBio ; 10(6)2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874916

RESUMO

Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. This phenomenon has been most often studied for Cryptococcus neoformans, a yeast that causes roughly 180,000 deaths per year, primarily in immunocompromised (e.g., human immunodeficiency virus [HIV]) patients. Existing dogma purports that vomocytosis involves distinctive cellular pathways and intracellular physicochemical cues in the host cell during phagosomal maturation. Moreover, it has been observed that the immunological state of the individual and macrophage phenotype affect vomocytosis outcomes. Here we compile the current knowledge on the factors (with respect to the phagocytic cell) that promote vomocytosis of C. neoformans from macrophages.


Assuntos
Cálcio/metabolismo , Cryptococcus neoformans/imunologia , Macrófagos/microbiologia , Fagossomos/microbiologia , Fagossomos/fisiologia , Animais , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/fisiologia , Camundongos , Fagocitose , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA