Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 371(6531): 803-810, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602850

RESUMO

Although bespoke, sequence-specific proteases have the potential to advance biotechnology and medicine, generation of proteases with tailor-made cleavage specificities remains a major challenge. We developed a phage-assisted protease evolution system with simultaneous positive and negative selection and applied it to three botulinum neurotoxin (BoNT) light-chain proteases. We evolved BoNT/X protease into separate variants that preferentially cleave vesicle-associated membrane protein 4 (VAMP4) and Ykt6, evolved BoNT/F protease to selectively cleave the non-native substrate VAMP7, and evolved BoNT/E protease to cleave phosphatase and tensin homolog (PTEN) but not any natural BoNT protease substrate in neurons. The evolved proteases display large changes in specificity (218- to >11,000,000-fold) and can retain their ability to form holotoxins that self-deliver into primary neurons. These findings establish a versatile platform for reprogramming proteases to selectively cleave new targets of therapeutic interest.


Assuntos
Toxinas Botulínicas/metabolismo , Evolução Molecular Direcionada , Engenharia de Proteínas , Animais , Bacteriófago M13/genética , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Domínio Catalítico , Linhagem Celular , Células Cultivadas , Humanos , Mutação , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Biblioteca de Peptídeos , Domínios Proteicos , Proteínas R-SNARE/metabolismo , Ratos , Seleção Genética , Especificidade por Substrato , Proteína 2 Associada à Membrana da Vesícula/metabolismo
2.
Nat Biotechnol ; 38(7): 892-900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32284586

RESUMO

The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5-A7 and ~3.2× higher editing at positions A3-A4 and A8-A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34+ cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98-99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.


Assuntos
Adenina/metabolismo , Sistemas CRISPR-Cas/genética , Citosina/metabolismo , RNA Guia de Cinetoplastídeos/genética , Adenosina Desaminase , DNA/genética , Edição de Genes/métodos , Células HEK293 , Humanos , Mutação/genética
3.
Nature ; 551(7681): 464-471, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29160308

RESUMO

The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.


Assuntos
Pareamento de Bases/genética , Edição de Genes/métodos , Genoma Humano/genética , Adenosina Desaminase/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Clivagem do DNA , Células HEK293 , Humanos , Modelos Moleculares , Polimorfismo de Nucleotídeo Único/genética
4.
Nature ; 533(7603): 420-4, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27096365

RESUMO

Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks. Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15-75% of total cellular DNA with minimal (typically ≤1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations.


Assuntos
Sistemas CRISPR-Cas , Citidina Desaminase/metabolismo , Citidina/genética , Engenharia Genética/métodos , Genoma/genética , Mutação Puntual/genética , Uridina/genética , Desaminase APOBEC-1 , Animais , Apolipoproteína E4/genética , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , DNA/metabolismo , Clivagem do DNA , Reparo do DNA , Desoxirribonuclease I/metabolismo , Genes p53/genética , Humanos , Mutação INDEL/genética , Camundongos , RNA Guia de Cinetoplastídeos/genética , Moldes Genéticos , Uracila-DNA Glicosidase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA