Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(12): 3329-3342, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35488454

RESUMO

The human secretome and membrane proteome are a large source of cancer biomarkers. Membrane-bound and secreted proteins are promising targets for many clinically approved drugs, including for the treatment of tumours. Here, we report a deep systematic analysis of 957 adenocarcinomas of the oesophagus, stomach, colon and rectum to examine the cancer-associated human secretome and membrane proteome of gastrointestinal tract adenocarcinomas (GIACs). Transcriptomic data from these GIACs were applied to an innovative majority decision-based algorithm. We quantified significantly expressed protein-coding genes. Interestingly, we found a consistent pattern in a small group of genes found to be overexpressed in GIACs, which were associated with a cytokine-cytokine interaction pathway (CCRI) in all four cancer subtypes. These CCRI associated genes, which spanned both one secretory and one membrane isoform were further analysed, revealing a putative biomarker, interleukin-1 receptor accessory protein (IL1RAP), which indicated a poor overall survival, a positive correlation with cancer stemness and a negative correlation with several kinds of T cells. These results were further validated in vitro through the knockdown of IL1RAP in two human gastric carcinoma cell lines, which resulted in a reduced indication of cellular proliferation, migration and markers of invasiveness. Following IL1RAP silencing, RNA seq results showed a consistent pattern of inhibition related to CCRI, proliferation pathways and low infiltration of regulatory T cells (Tregs) and CD8 naive cells. The significance of the human secretome and membrane proteome is elucidated by these findings, which indicate IL1RAP as a potential candidate biomarker for cytokine-mediated cancer immunotherapy in gastric carcinoma.


Assuntos
Adenocarcinoma , Proteoma , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Colo/patologia , Citocinas/metabolismo , Humanos , Proteoma/metabolismo , Secretoma
2.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274346

RESUMO

Present study aimed to elucidate the anticancer effect and the possible molecular mechanism underlying the action of Latcripin 1 (LP1), from the mushroom Lentinula edodes strain C91-3 against gastric cancer cell lines SGC-7901 and BGC-823. Cell viability was measured by Cell Counting Kit-8 (CCK-8); morphological changes were observed by phase contrast microscope; autophagy was determined by transmission electron microscope and fluorescence microscope. Apoptosis and cell cycle were assessed by flow cytometer; wound-healing, transwell migration and invasion assays were performed to investigate the effect of LP1 on gastric cancer cell's migration and invasion. Herein, we found that LP1 resulted in the induction of autophagy by the formation of autophagosomes and conversion of light chain 3 (LC3I into LC3II. LP1 up-regulated the expression level of autophagy-related gene (Atg7, Atg5, Atg12, Atg14) and Beclin1; increased and decreased the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins respectively, along with the activation of Caspase-3. At lower-doses, LP1 have shown to arrest cells in the S phase of the cell cycle and decreased the expression level of matrix metalloproteinase MMP-2 and MMP-9. In addition, it has also been shown to regulate the phosphorylation of one of the most hampered gastric cancer pathway, that is, protein kinase B/mammalian target of rapamycin (Akt/mTOR) channel and resulted in cell death. These findings suggested LP1 as a potential natural anti-cancer agent, for exploring the gastric cancer therapies and as a contender for further in vitro and in vivo investigations.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Fúngicas/farmacologia , Cogumelos Shiitake/química , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Cicatrização/efeitos dos fármacos
3.
Gene ; 642: 212-219, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111208

RESUMO

Lentinula edodes C91-3 is an edible mushroom that has demonstrated a remarkable anti-tumor effect in various cancer cells both in vitro and in vivo. In the present study, we report the ability of recombinant thioredoxin-like latcripin 11 (LP-11) of Lentinula edodes C91-3 to suppress the proliferation of various cancer cells. The LP-11 gene of Lentinula edodes C91-3 was cloned in the pET-32a(+) expression vector and expressed in a prokaryotic system. The expressed protein was refolded by gradual dialysis and purified by affinity gel filtration chromatography. The antioxidant activity of LP-11 was tested by 1,1-dipheny l-2-picrylhydrazyl (DPPH) assay. The anti-tumor activity of recombinant LP-11 was tested in eight kinds of tumor cell lines by CCK-8 assay. Recombinant LP-11 significantly suppressed the proliferation of various cancer cells, but not normal human umbilical vein endothelial cells. Human lymphoma U937 cells exhibited the most sensitivity to LP-11 protein. U937 cell apoptosis was assessed by Annexin V staining coupled with flow cytometry, and mitochondrial morphology was analyzed by light and electron microscopy. It was revealed that recombinant LP-11 induced apoptosis in human leukemic monocyte lymphoma U937 cells. Our findings suggest that recombinant LP-11 is a promising agent for the treatment of lymphoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Proteínas Fúngicas/farmacologia , Neoplasias/metabolismo , Proteínas Recombinantes/farmacologia , Cogumelos Shiitake/metabolismo , Células A549 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Fúngicas/genética , Células HL-60 , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células K562 , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Células U937
4.
Integr Cancer Ther ; 17(2): 200-209, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29094602

RESUMO

Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, "mushrooms," contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).


Assuntos
Agaricales/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Transdução de Sinais/efeitos dos fármacos
5.
Biomed Pharmacother ; 80: 289-297, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27133068

RESUMO

T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions.


Assuntos
Basigina/metabolismo , Carcinoma Hepatocelular/imunologia , Ciclofilina A/metabolismo , Evasão da Resposta Imune , Vigilância Imunológica , Neoplasias Hepáticas/imunologia , Linfócitos T/imunologia , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Técnicas de Cocultura , Ciclofilina A/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Evasão da Resposta Imune/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Transfecção
6.
Mol Cell Biochem ; 411(1-2): 393-402, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541755

RESUMO

GALNT4 belongs to a family of N-acetylgalactosaminyltransferases, which catalyze the transfer of GalNAc to Serine or Threonine residues in the initial step of mucin-type O-linked protein glycosylation. This glycosylation type is the most complex post-translational modification of proteins, playing important roles during cellular differentiation and in pathological disorders. Most of the breast cancer subtypes are estrogen receptor positive, and hence, the estrogen pathway represents a key regulatory network. We investigated the expression of GalNAc-T4 in a panel of mammary epithelial cell lines and found its expression is associated with the estrogen status of the cells. FOXA1, a key transcription factor, functions to promote estrogen responsive gene expression by acting as a cofactor to estrogen receptor alpha (ERα), but all the aspects of this regulatory mechanism are not fully explored. This study found that knockdown of GALNT4 expression in human breast cancer cells attenuated the protein expression of ERα, FOXA1, and Cyclin D1. Further, our immunoprecipitation assays depicted the possibility of FOXA1 to undergo O-GalNAc modifications with a decrease of GalNAc residues in the GALNT4 knockdown cells and also impairment in the FOXA1-ERα association. Rescuing GALNT4 expression could restore the interaction as well as the glycosylation of FOXA1. Together, these findings suggest a key role for GalNAc-T4 in the estrogen pathway through FOXA1 glycosylation.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , N-Acetilgalactosaminiltransferases/fisiologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
7.
Apoptosis ; 20(12): 1563-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26404526

RESUMO

Endothelial apoptosis triggered by oxidized low-density lipoprotein (oxLDL) can accelerate the progression of endothelial dysfunction atherosclerosis. Phosphocreatine (PCr) is a natural compound, which has been used in cardiac disease and cardiopulmonary resuscitation. However, its protective effects on atherosclerosis and its mechanism have not been clarified. In the present study, we investigated the anti-apoptotic effect of phosphocreatine in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. HUVECs were pre-treated with 10-30 mM PCr and then stimulated with oxLDL. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, CCK assay, and flow cytometry respectively. Levels of Bax, Bcl-2, protein expression of protein kinase B (Akt), eNOS and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Lactate dehydrogenase (LDH), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) contents were determined by spectrophotometer. Our results showed that PCr dose-dependently prevented oxLDL associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, LDH and MDA leakage and loss of SOD, decrease of Bcl-2/Bax protein ratio, activation of caspase-3 and 9, and ROS generation. In addition, the antiapoptotic effect of PCr was partially inhibited by a PI3K inhibitor (LY294002) and also enhanced p-Akt/Akt protein ratio, eNOS activation and NO production. In conclusion, our data show that the inhibition of oxLDL-induced endothelial apoptosis by PCr is due, at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfocreatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Cromonas/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Morfolinas/farmacologia , Óxido Nítrico/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
8.
Am J Cancer Res ; 5(3): 1101-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26045989

RESUMO

Glioma is the world's commonest primary brain malignancy with much of its biology relating to translational and post-translational events still unknown. In this study, we investigated the clinicopathological significance of N-linked ß1-6-GlcNAc branches and GnT-V enzyme in the development and progression of astrocytic glioma. Expression of GnT-V and its GlcNAc-ß1-6 oligosaccharides by-product together with Con-A binding sugars were assessed immunohistochemically on tissue microarrays of 16 normal brain and 159 tissue samples of astrocytomas of variable grades and histology. Although tissues of both grade I astrocytomas and normal brain showed considerably higher GnT-V expression, GlcNAc-ß1-6 expression was significantly high only in tissues of grade I astrocytomas (p < 0.001), which is attributable to elevated levels of the precursor Con-A binding sugar moieties (p < 0.001). The activity of GnT-V enzyme was found to be dependent on the degree of glioma pathogenesis, as the GlcNAc-ß1-6 branched expression diminished with every progressive grade of glioma, reaching minimum in glioblastoma (p < 0.001). Having biphasic activity in gliomagenesis, the role of GnT-V in glioma was deciphered by generating different ectopic GnT-V expressions in U-87 cells, which showed the highest GnT-V expression among selected glioma cell lines. Transient GnT-V rescue was achieved in knockdown clones by transfection with GnT-V expression vector. Suppression of GnT-V in U-87 cells slowed cell proliferation with G0/G1 cell cycle phase arrest. Reduced tumorigenicity, invasiveness and cell-ECM interactions were also associated with suppressed in vitro GnT-V activity suggesting GnT-V may act as an oncoprotein. We report for the first time that GnT-V products are involved in early gliomagenesis but their reduced expression, correlating with low Con-A binding sugars level found in high tumor grades predicts the loss of total N-glycosylation in glioma development and may be of potential diagnostic and/or prognostic value in astrocytoma.

9.
Biomed Pharmacother ; 68(6): 785-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25107841

RESUMO

The Notch signalling pathway is essential for proper cell growth and development. Many factors interact in the cellular context to bring about its effects. Critical to this process is the influence of Pofut1 whose function is to fucosylate Notch receptors and ligands on the cell surface for proper interaction. Of the three liver cell lines, HepG2, SMMC-7721 (hepatoma cell lines) and L-02 (normal fetal liver cell line) were investigated. In the current study, Pofut1 was silenced in L-02 due to its significantly high level of expression, (P<0.05) using transient SiRNA. Notch1, Cyclin D1 and p53 were significantly suppressed consequently. The effect on cell cycle, proliferation, adhesion and migration were investigated. Evidence adduced, indicate a general modification of cellular function. While proliferation and adhesion were significantly inhibited, the cell cycle arrest was obvious (P<0.05), migration was not affected. The effects seen are akin to those reported in previous studies in hepatoma cells mimicking some of the effects of notch1 silencing. Results of this study indicate a possible role of Pofut1 conferring a tumor suppressor role through the Notch signalling pathway.


Assuntos
Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Regulação para Baixo/fisiologia , Fucosiltransferases/biossíntese , Hepatócitos/metabolismo , Receptor Notch1/biossíntese , Linhagem Celular , Fucosiltransferases/antagonistas & inibidores , Fucosiltransferases/genética , Regulação da Expressão Gênica , Inativação Gênica , Células Hep G2 , Humanos , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA