Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37391564

RESUMO

The development of bifunctional hybrid materials based on natural clays and layered double hydroxide (LDH) and their application on the simultaneous adsorption of Cd(II) and As(V) was investigated in this work. Two different synthesis routes, in situ and assembly, were employed to obtain the hybrid materials. Three types of natural clays, namely bentonite (B), halloysite (H), and sepiolite (S), were used in the study. These clays are characterized by a laminar, tubular, and fibrous structural arrangement, respectively. The physicochemical characterization results indicate that the hybrid materials were formed through interactions between the Al-OH and Si-OH groups present in the natural clays, and the Mg-OH and Al-OH groups present in the LDH for both synthesis routes. However, the "in situ" route yields a more homogenous material because the LDH formation is performed on the natural clay surface. The hybrid materials showed an anion and cation exchange capacity up to 200.7 meq/100 g and an isoelectric point near 7. The arrangement of natural clay has no impact on the properties of hybrid material but influences the adsorption capacity. The adsorption of Cd(II) onto hybrid materials was enhanced in comparison with natural clays, obtaining adsorption capacities of 80, 74, 65, and 30 mg/g for 15:1 (LDH:H)INSITU, 1:1 (LDH:S)INSITU, 1:1 (LDH:B)INSITU, and 1:1 (LDH:H)INSITU, respectively. The adsorption capacities of hybrid materials to adsorb As(V) were between 20 and 60 µg/g. The 15:1 (LDH:H)INSITU sample showed the best adsorption capacity being ten folds greater than halloysite and LDH. In all cases, the hybrid materials showed a synergistic effect for Cd(II) and As(V) adsorption. The adsorption study of Cd(II) onto hybrid materials showed that the primary adsorption mechanism is cation exchange between the interlayer cations in natural clay and Cd(II) in the aqueous solution. The adsorption of As(V) showed that the adsorption mechanism is attributed to anion exchange between CO23- in the interlayer space of LDH and H2ASO4- in the solution. The simultaneous adsorption of As (V) and Cd (II) shows that, during the As(V) adsorption, there is no competition by the adsorption sites. Still, the adsorption capacity towards Cd(II) was enhanced 1.2-folds. This study ultimately revealed that the arrangement of clay has a significant influence on the adsorption capacity of the hybrid material. This can be attributed to the similar morphology between the hybrid material and natural clays, as well as the important diffusion effects observed in the system.

2.
Sci Total Environ ; 640-641: 1241-1250, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021289

RESUMO

The competitive sorption of the antibiotics sulfamethoxazole (SMX) and trimethoprim (TMP) and SMX-Cd(II) on a hybrid clay nanosorbent (NanoSorb) was investigated in detail in this work. NanoSorb was synthesized by sorbing a surfactant on bentonite. Besides, the sorption of SMX on the NanoSorb was confirmed by FTIR analysis, and SMX was mainly sorbed on NanoSorb by a partition mechanism due to hydrophobic interactions. Otherwise, the single adsorption of Cd(II) and TMP onto NanoSorb were due to electrostatic interaction and hydrophobic partition, respectively. The capacity of NanoSorb for sorbing single SMX was very similar to that for single Cd(II), but more than 10 times higher than that for single TMP. The competitive sorption of SMX-TMP was antagonistic because the sorption of one antibiotic on NanoSorb was decreased by the presence of the other antibiotic. The uptake of SMX was reduced up to 43.4% by the presence of TMP, whereas the presence of SMX decreased the uptake of TMP up to 29.6%. The non-modified Langmuir multicomponent isotherm (NLMI) interpreted quite well the experimental competitive sorption data of SMX-TMP. On the other hand, the competitive sorption of SMX-Cd(II) on NanoSorb revealed that the sorption of SMX was non-interactive because it was not influenced by the presence of Cd(II). Whereas, the sorption of Cd(II) was synergistic or cooperative since the uptake of Cd(II) sorbed increased considerably with the uptake of SMX sorbed on NanoSorb. The two-site Langmuir model fitted the experimental competitive sorption data of Cd(II) on NanoSorb saturated with SMX. The application of this isotherm was based on the fact that Cd(II) sorbed on two types of sites: a) cationic sites of the NanoSorb and b) Pi-cation interactions between the aromatic ring of the SMX sorbed on NanoSorb and Cd2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA